This repository has been archived by the owner on Jun 4, 2022. It is now read-only.
forked from sccn/amica
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunmod2.f90
567 lines (458 loc) · 17.2 KB
/
funmod2.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
module funmod2
contains
subroutine matout(A,m,n)
integer :: i,m,n
double precision :: A(m,n)
do i = 1,m
print "(10f16.8)", A(i,:); call flush(6)
end do
end subroutine matout
subroutine bytes_in_rec( bytes )
implicit none
integer bytes
character*8 string
integer i
integer ierr
double precision d;
real r;
d = dble(1.0);
r = 1.0;
bytes = 0
do i = 1,8
!open(unit=15,file='/home/jason/tmpbytetst',access='direct',recl=i)
open(unit=15,status='scratch',access='direct',recl=i)
write(15,rec=1,iostat=ierr) r
close(15, status='delete')
!print *, 'i = ', i, ' real ierr = ', ierr
if (ierr == 0) then
bytes = i
exit
end if
!open(unit=16,file='/home/jason/tmpbytetst2',access='direct',recl=i)
!write(16,rec=1,iostat=ierr) d
!close(16, status='delete')
!print *, 'i = ', i, ' double ierr = ', ierr
end do
print *, 'bytes in real = ', bytes
!open( 10, status = 'scratch', access = 'direct', recl = 1 )
!write( 10,rec=1,iostat=ierr) d
!do i = 1,8
! write( 10, rec = 1, iostat = ierr ) string(1:i)
! print *, 'i = ', i, ' ierr = ', ierr
! if ( ierr /= 0 ) exit
! bytes = i
!end do
!close( 10, status = 'delete' )
end subroutine bytes_in_rec
!--------------------------------------------------------------------------------------
! The following gamma/psi code was obtained from Alan Miller's Fortran Software website.
FUNCTION gamln (a) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF LN(GAMMA(A)) FOR POSITIVE A
!-----------------------------------------------------------------------
! WRITTEN BY ALFRED H. MORRIS
! NAVAL SURFACE WARFARE CENTER
! DAHLGREN, VIRGINIA
!--------------------------
! D = 0.5*(LN(2*PI) - 1)
!--------------------------
IMPLICIT NONE
double precision, INTENT(IN) :: a
double precision :: fn_val
double precision :: c0 = .833333333333333D-01, c1 = -.277777777760991D-02, &
c2 = .793650666825390D-03, c3 = -.595202931351870D-03, &
c4 = .837308034031215D-03, c5 = -.165322962780713D-02, &
d = .418938533204673D0, t, w
INTEGER :: i, n
!--------------------------
IF (a > 0.8D0) GO TO 10
fn_val = gamln1(a) - LOG(a)
RETURN
10 IF (a > 2.25D0) GO TO 20
t = (a - 0.5D0) - 0.5D0
fn_val = gamln1(t)
RETURN
20 IF (a >= 10.0D0) GO TO 30
n = a - 1.25D0
t = a
w = 1.0D0
DO i = 1, n
t = t - 1.0D0
w = t*w
END DO
fn_val = gamln1(t - 1.0D0) + LOG(w)
RETURN
30 t = (1.0D0/a)**2
w = (((((c5*t + c4)*t + c3)*t + c2)*t + c1)*t + c0)/a
fn_val = (d + w) + (a - 0.5D0)*(LOG(a) - 1.0D0)
RETURN
END FUNCTION gamln
FUNCTION gamln1 (a) RESULT(fn_val)
!-----------------------------------------------------------------------
! EVALUATION OF LN(GAMMA(1 + A)) FOR -0.2 .LE. A .LE. 1.25
!-----------------------------------------------------------------------
IMPLICIT NONE
double precision, INTENT(IN) :: a
double precision :: fn_val
double precision :: w, x, &
p0 = .577215664901533D+00, p1 = .844203922187225D+00, &
p2 = -.168860593646662D+00, p3 = -.780427615533591D+00, &
p4 = -.402055799310489D+00, p5 = -.673562214325671D-01, &
p6 = -.271935708322958D-02, &
q1 = .288743195473681D+01, q2 = .312755088914843D+01, &
q3 = .156875193295039D+01, q4 = .361951990101499D+00, &
q5 = .325038868253937D-01, q6 = .667465618796164D-03, &
r0 = .422784335098467D+00, r1 = .848044614534529D+00, &
r2 = .565221050691933D+00, r3 = .156513060486551D+00, &
r4 = .170502484022650D-01, r5 = .497958207639485D-03, &
s1 = .124313399877507D+01, s2 = .548042109832463D+00, &
s3 = .101552187439830D+00, s4 = .713309612391000D-02, &
s5 = .116165475989616D-03
!----------------------
IF (a >= 0.6D0) GO TO 10
w = ((((((p6*a + p5)*a + p4)*a + p3)*a + p2)*a + p1)*a + p0)/ &
((((((q6*a + q5)*a + q4)*a + q3)*a + q2)*a + q1)*a + 1.0D0)
fn_val = -a*w
RETURN
10 x = (a - 0.5D0) - 0.5D0
w = (((((r5*x + r4)*x + r3)*x + r2)*x + r1)*x + r0)/ &
(((((s5*x + s4)*x + s3)*x + s2)*x + s1)*x + 1.0D0)
fn_val = x*w
RETURN
END FUNCTION gamln1
!-----------------------------------------------------------------------
FUNCTION psifun(xx) RESULT(fn_val)
!---------------------------------------------------------------------
! EVALUATION OF THE DIGAMMA FUNCTION
! -----------
! PSIFUN(XX) IS ASSIGNED THE VALUE 0 WHEN THE DIGAMMA FUNCTION CANNOT
! BE COMPUTED.
! THE MAIN COMPUTATION INVOLVES EVALUATION OF RATIONAL CHEBYSHEV
! APPROXIMATIONS PUBLISHED IN MATH. COMP. 27, 123-127(1973) BY
! CODY, STRECOK AND THACHER.
!---------------------------------------------------------------------
! PSIFUN WAS WRITTEN AT ARGONNE NATIONAL LABORATORY FOR THE FUNPACK
! PACKAGE OF SPECIAL FUNCTION SUBROUTINES. PSIFUN WAS MODIFIED BY
! A.H. MORRIS (NSWC).
!---------------------------------------------------------------------
IMPLICIT NONE
double precision, INTENT(IN) :: xx
double precision :: fn_val
double precision :: dx0 = 1.461632144968362341262659542325721325D0
!---------------------------------------------------------------------
! PIOV4 = PI/4
! DX0 = ZERO OF PSIFUN TO EXTENDED PRECISION
!---------------------------------------------------------------------
double precision :: aug, den, piov4 = .785398163397448D0, sgn, upper, &
w, x, xmax1, xmx0, xsmall, z
INTEGER :: i, m, n, nq
!---------------------------------------------------------------------
! COEFFICIENTS FOR RATIONAL APPROXIMATION OF
! PSIFUN(X) / (X - X0), 0.5 <= X <= 3.0
!---------------------------------------------------------------------
double precision :: p1(7) = (/ .895385022981970D-02, .477762828042627D+01, &
.142441585084029D+03, .118645200713425D+04, &
.363351846806499D+04, .413810161269013D+04, &
.130560269827897D+04 /), &
q1(6) = (/ .448452573429826D+02, .520752771467162D+03, &
.221000799247830D+04, .364127349079381D+04, &
.190831076596300D+04, .691091682714533D-05 /)
!---------------------------------------------------------------------
! COEFFICIENTS FOR RATIONAL APPROXIMATION OF
! PSIFUN(X) - LN(X) + 1 / (2*X), X > 3.0
!---------------------------------------------------------------------
double precision :: p2(4) = (/ -.212940445131011D+01, -.701677227766759D+01, &
-.448616543918019D+01, -.648157123766197D+00 /), &
q2(4) = (/ .322703493791143D+02, .892920700481861D+02, &
.546117738103215D+02, .777788548522962D+01 /)
!---------------------------------------------------------------------
! MACHINE DEPENDENT CONSTANTS ...
! XMAX1 = THE SMALLEST POSITIVE FLOATING POINT CONSTANT
! WITH ENTIRELY INTEGER REPRESENTATION. ALSO USED
! AS NEGATIVE OF LOWER BOUND ON ACCEPTABLE NEGATIVE
! ARGUMENTS AND AS THE POSITIVE ARGUMENT BEYOND WHICH
! PSIFUN MAY BE REPRESENTED AS ALOG(X).
! XSMALL = ABSOLUTE ARGUMENT BELOW WHICH PI*COTAN(PI*X)
! MAY BE REPRESENTED BY 1/X.
!---------------------------------------------------------------------
xmax1 = ipmpar(3)
xmax1 = MIN(xmax1, 1.0D0/dpmpar(1))
xsmall = 1.d-9
!---------------------------------------------------------------------
x = xx
aug = 0.0D0
IF (x >= 0.5D0) GO TO 200
!---------------------------------------------------------------------
! X .LT. 0.5, USE REFLECTION FORMULA
! PSIFUN(1-X) = PSI(X) + PI * COTAN(PI*X)
!---------------------------------------------------------------------
IF (ABS(x) > xsmall) GO TO 100
IF (x == 0.0D0) GO TO 400
!---------------------------------------------------------------------
! 0 .LT. ABS(X) .LE. XSMALL. USE 1/X AS A SUBSTITUTE
! FOR PI*COTAN(PI*X)
!---------------------------------------------------------------------
aug = -1.0D0 / x
GO TO 150
!---------------------------------------------------------------------
! REDUCTION OF ARGUMENT FOR COTAN
!---------------------------------------------------------------------
100 w = - x
sgn = piov4
IF (w > 0.0D0) GO TO 120
w = - w
sgn = -sgn
!---------------------------------------------------------------------
! MAKE AN ERROR EXIT IF X .LE. -XMAX1
!---------------------------------------------------------------------
120 IF (w >= xmax1) GO TO 400
nq = INT(w)
w = w - nq
nq = INT(w*4.0D0)
w = 4.0D0 * (w - nq * .25D0)
!---------------------------------------------------------------------
! W IS NOW RELATED TO THE FRACTIONAL PART OF 4.0 * X.
! ADJUST ARGUMENT TO CORRESPOND TO VALUES IN FIRST
! QUADRANT AND DETERMINE SIGN
!---------------------------------------------------------------------
n = nq / 2
IF ((n+n) /= nq) w = 1.0D0 - w
z = piov4 * w
m = n / 2
IF ((m+m) /= n) sgn = - sgn
!---------------------------------------------------------------------
! DETERMINE FINAL VALUE FOR -PI*COTAN(PI*X)
!---------------------------------------------------------------------
n = (nq + 1) / 2
m = n / 2
m = m + m
IF (m /= n) GO TO 140
!---------------------------------------------------------------------
! CHECK FOR SINGULARITY
!---------------------------------------------------------------------
IF (z == 0.0D0) GO TO 400
!---------------------------------------------------------------------
! USE COS/SIN AS A SUBSTITUTE FOR COTAN, AND
! SIN/COS AS A SUBSTITUTE FOR TAN
!---------------------------------------------------------------------
aug = sgn * ((COS(z) / SIN(z)) * 4.0D0)
GO TO 150
140 aug = sgn * ((SIN(z) / COS(z)) * 4.0D0)
150 x = 1.0D0 - x
200 IF (x > 3.0D0) GO TO 300
!---------------------------------------------------------------------
! 0.5 .LE. X .LE. 3.0
!---------------------------------------------------------------------
den = x
upper = p1(1) * x
DO i = 1, 5
den = (den + q1(i)) * x
upper = (upper + p1(i+1)) * x
END DO
den = (upper + p1(7)) / (den + q1(6))
xmx0 = x - dx0
fn_val = den * xmx0 + aug
RETURN
!---------------------------------------------------------------------
! IF X .GE. XMAX1, PSIFUN = LN(X)
!---------------------------------------------------------------------
300 IF (x >= xmax1) GO TO 350
!---------------------------------------------------------------------
! 3.0 .LT. X .LT. XMAX1
!---------------------------------------------------------------------
w = 1.0D0 / (x * x)
den = w
upper = p2(1) * w
DO i = 1, 3
den = (den + q2(i)) * w
upper = (upper + p2(i+1)) * w
END DO
aug = upper / (den + q2(4)) - 0.5D0 / x + aug
350 fn_val = aug + LOG(x)
RETURN
!---------------------------------------------------------------------
! ERROR RETURN
!---------------------------------------------------------------------
400 fn_val = 0.0D0
RETURN
END FUNCTION psifun
FUNCTION ipmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! IPMPAR PROVIDES THE INTEGER MACHINE CONSTANTS FOR THE COMPUTER
! THAT IS USED. IT IS ASSUMED THAT THE ARGUMENT I IS AN INTEGER
! HAVING ONE OF THE VALUES 1-10. IPMPAR(I) HAS THE VALUE ...
! INTEGERS.
! ASSUME INTEGERS ARE REPRESENTED IN THE N-DIGIT, BASE-A FORM
! SIGN ( X(N-1)*A**(N-1) + ... + X(1)*A + X(0) )
! WHERE 0 .LE. X(I) .LT. A FOR I=0,...,N-1.
! IPMPAR(1) = A, THE BASE (radix).
! IPMPAR(2) = N, THE NUMBER OF BASE-A DIGITS (digits).
! IPMPAR(3) = A**N - 1, THE LARGEST MAGNITUDE (huge).
! FLOATING-POINT NUMBERS.
! IT IS ASSUMED THAT THE SINGLE AND DOUBLE PRECISION FLOATING
! POINT ARITHMETICS HAVE THE SAME BASE, SAY B, AND THAT THE
! NONZERO NUMBERS ARE REPRESENTED IN THE FORM
! SIGN (B**E) * (X(1)/B + ... + X(M)/B**M)
! WHERE X(I) = 0,1,...,B-1 FOR I=1,...,M,
! X(1) .GE. 1, AND EMIN .LE. E .LE. EMAX.
! IPMPAR(4) = B, THE BASE.
! SINGLE-PRECISION
! IPMPAR(5) = M, THE NUMBER OF BASE-B DIGITS.
! IPMPAR(6) = EMIN, THE SMALLEST EXPONENT E.
! IPMPAR(7) = EMAX, THE LARGEST EXPONENT E.
! DOUBLE-PRECISION
! IPMPAR(8) = M, THE NUMBER OF BASE-B DIGITS.
! IPMPAR(9) = EMIN, THE SMALLEST EXPONENT E.
! IPMPAR(10) = EMAX, THE LARGEST EXPONENT E.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
INTEGER :: fn_val
SELECT CASE(i)
CASE( 1)
fn_val = RADIX(i)
CASE( 2)
fn_val = DIGITS(i)
CASE( 3)
fn_val = HUGE(i)
CASE( 4)
fn_val = RADIX(1.0)
CASE( 5)
fn_val = DIGITS(1.0)
CASE( 6)
fn_val = MINEXPONENT(1.0)
CASE( 7)
fn_val = MAXEXPONENT(1.0)
CASE( 8)
fn_val = DIGITS(1.0D0)
CASE( 9)
fn_val = MINEXPONENT(1.0D0)
CASE(10)
fn_val = MAXEXPONENT(1.0D0)
CASE DEFAULT
RETURN
END SELECT
RETURN
END FUNCTION ipmpar
FUNCTION spmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! SPMPAR PROVIDES THE SINGLE PRECISION MACHINE CONSTANTS FOR
! THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
! I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
! SINGLE PRECISION ARITHMETIC BEING USED HAS M BASE B DIGITS AND
! ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN
! SPMPAR(1) = B**(1 - M), THE MACHINE PRECISION,
! SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
! SPMPAR(3) = B**EMAX*(1 - B**(-M)), THE LARGEST MAGNITUDE.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
double precision :: fn_val
! Local variable
double precision :: one = 1.0
SELECT CASE (i)
CASE (1)
fn_val = EPSILON(one)
CASE (2)
fn_val = TINY(one)
CASE (3)
fn_val = HUGE(one)
END SELECT
RETURN
END FUNCTION spmpar
FUNCTION dpmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! DPMPAR PROVIDES THE DOUBLE PRECISION MACHINE CONSTANTS FOR
! THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
! I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
! DOUBLE PRECISION ARITHMETIC BEING USED HAS M BASE B DIGITS AND
! ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN
! DPMPAR(1) = B**(1 - M), THE MACHINE PRECISION,
! DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
! DPMPAR(3) = B**EMAX*(1 - B**(-M)), THE LARGEST MAGNITUDE.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
double precision :: fn_val
! Local variable
double precision :: one = 1.0
SELECT CASE (i)
CASE (1)
fn_val = EPSILON(one)
CASE (2)
fn_val = TINY(one)
CASE (3)
fn_val = HUGE(one)
END SELECT
RETURN
END FUNCTION dpmpar
FUNCTION epsln () RESULT(fn_val)
!--------------------------------------------------------------------
! THE EVALUATION OF LN(EPS) WHERE EPS IS THE SMALLEST NUMBER
! SUCH THAT 1.0 + EPS .GT. 1.0 . L IS A DUMMY ARGUMENT.
!--------------------------------------------------------------------
IMPLICIT NONE
double precision :: fn_val
! Local variable
double precision :: one = 1.0
fn_val = LOG( EPSILON(one) )
RETURN
END FUNCTION epsln
FUNCTION exparg (l) RESULT(fn_val)
!--------------------------------------------------------------------
! IF L = 0 THEN EXPARG(L) = THE LARGEST POSITIVE W FOR WHICH
! EXP(W) CAN BE COMPUTED.
!
! IF L IS NONZERO THEN EXPARG(L) = THE LARGEST NEGATIVE W FOR
! WHICH THE COMPUTED VALUE OF EXP(W) IS NONZERO.
!
! NOTE... ONLY AN APPROXIMATE VALUE FOR EXPARG(L) IS NEEDED.
!--------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: l
double precision :: fn_val
! Local variable
double precision :: one = 1.0
IF (l == 0) THEN
fn_val = LOG( HUGE(one) )
ELSE
fn_val = LOG( TINY(one) )
END IF
RETURN
END FUNCTION exparg
FUNCTION depsln () RESULT(fn_val)
!--------------------------------------------------------------------
! THE EVALUATION OF LN(EPS) WHERE EPS IS THE SMALLEST NUMBER
! SUCH THAT 1.D0 + EPS .GT. 1.D0 . L IS A DUMMY ARGUMENT.
!--------------------------------------------------------------------
IMPLICIT NONE
double precision :: fn_val
! Local variable
double precision :: one = 1.0
fn_val = LOG( EPSILON(one) )
RETURN
END FUNCTION depsln
FUNCTION dxparg (l) RESULT(fn_val)
!--------------------------------------------------------------------
! IF L = 0 THEN DXPARG(L) = THE LARGEST POSITIVE W FOR WHICH
! DEXP(W) CAN BE COMPUTED.
!
! IF L IS NONZERO THEN DXPARG(L) = THE LARGEST NEGATIVE W FOR
! WHICH THE COMPUTED VALUE OF DEXP(W) IS NONZERO.
!
! NOTE... ONLY AN APPROXIMATE VALUE FOR DXPARG(L) IS NEEDED.
!--------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: l
double precision :: fn_val
! Local variable
double precision :: one = 1.0
IF (l == 0) THEN
fn_val = LOG( HUGE(one) )
ELSE
fn_val = LOG( TINY(one) )
END IF
RETURN
END FUNCTION dxparg
!----------------------------------------------------------------------
end module funmod2