-
Notifications
You must be signed in to change notification settings - Fork 5
/
snATAC.nmf.py
405 lines (360 loc) · 12 KB
/
snATAC.nmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/bin/python
import argparse
parser = argparse.ArgumentParser(description='Run NMF using sklearn.')
parser.add_argument('-i', '--inputF', type=str, dest="inputF", help='input matrix in npz format')
parser.add_argument('-x', '--xgi', type=str, dest="xgi", help='input xgi index')
parser.add_argument('-y', '--ygi', type=str, dest="ygi", help='input ygi index')
parser.add_argument('-r', '--rank', type=int, dest="rank", help='an integer for rank ')
parser.add_argument('-n', '--n_run', type=int, dest="n_run", default=1, help='an integer for # of runs ')
parser.add_argument('-p', '--prob', type=float, dest="prob", default=0.05, help='an float for prob of bins with low level information ')
parser.add_argument('-c', '--ct', type=int, dest="ct", default=1000, help='an integer for # of read counts used for filtering')
parser.add_argument('-o', '--outPrefix', type=str, dest="outPrefix", help='output prefix')
args = parser.parse_args()
from os.path import dirname, abspath, join
from warnings import warn
import numpy as np
from numpy import array, ravel
import scipy as sp
from scipy import io
from scipy.cluster.hierarchy import linkage, leaves_list, cophenet
from scipy.spatial.distance import squareform
from scipy.stats import describe
from scipy.stats.mstats import mquantiles
from scipy.sparse import save_npz, load_npz
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfTransformer
import fastcluster as fc
from time import perf_counter as pc
import matplotlib.pyplot as plt
plt.switch_backend('agg')
try:
from matplotlib.pyplot import savefig, imshow, set_cmap
except ImportError as exc:
warn("Matplotlib must be installed.")
import itertools
from itertools import compress
import math
def run():
""" Run standard NMF on rank """
inputF = args.inputF
xgi = args.xgi
ygi = args.ygi
outPrefix = args.outPrefix
rank = args.rank
n = args.n_run
prob = args.prob
ct = args.ct
start_time = pc()
V = read_npz(inputF)
xgi = read_xgi(xgi)
ygi = read_xgi(ygi)
out = filter_V(V, xgi, ygi, prob, ct)
V = out['V']
write_coo(V, outPrefix)
selt_xgi = out['xgi']
np.savetxt('.'.join([outPrefix, "xgi"]), selt_xgi, fmt= "%s", delimiter="\t")
selt_ygi = out['ygi']
np.savetxt('.'.join([outPrefix, "ygi"]), selt_ygi, fmt= "%s", delimiter="\t")
save_npz_gi(V, selt_xgi, selt_ygi, outPrefix)
V = compute_tfidf(V)
run_nmf(V, rank, n, outPrefix)
end_time = pc()
print('Used (secs): ', end_time - start_time)
def read(inputf):
print("=== read in MM format files %s ===" % inputf)
data = io.mmread(inputf)
return data
def read_npz(inputf):
"""
Read snATAC data in npz format. The matrix's shape is ### (bins) x ### (samples).
It contains only positive data (boolean).
Return the dense data matrix.
"""
V = load_npz(inputf)
V = (V*1).T.tocsr()
return V
def save_npz_gi(V, xgi, ygi, prefix):
print("=== save npz format with xgi and ygi===")
npz_file = '.'.join([prefix, "npz"])
save_npz(npz_file, V)
xgi_file = '.'.join([prefix, "xgi"])
np.savetxt(xgi_file, xgi, fmt= "%s", delimiter="\t")
ygi_file = '.'.join([prefix, "ygi"])
np.savetxt(ygi_file, ygi, fmt= "%s", delimiter="\t")
def read_xgi(xgi):
fname = xgi
with open(fname) as f:
xgi_content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
xgi_content = [x.strip() for x in xgi_content]
return xgi_content
def read_ygi(ygi):
fname = ygi
with open(fname) as f:
ygi_content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
ygi_content = [x.strip() for x in ygi_content]
return ygi_content
def write_coo(coo, prefix):
coo = coo.tocoo()
coo_file = '.'.join([prefix, "mtx"])
f = open(coo_file, "w")
for row, col, value in zip(coo.row, coo.col, coo.data):
out = "{0}\t{1}\t{2}\n".format(row, col, value)
f.write(out)
def filter_V(V, xgi, ygi, prob, ct):
colSum = np.sum(V,axis=0)
"""print(describe(colSum.T))"""
col_tokeep = ravel(colSum >= ct)
newV = V[:, col_tokeep]
rowSum = np.sum(newV,axis=1)
rowQ = mquantiles(np.array(rowSum), prob=prob)
row_tokeep = ravel(rowSum >= rowQ)
newV = newV[row_tokeep, :]
selt_xgi = list(compress(xgi, col_tokeep))
selt_ygi = list(compress(ygi, row_tokeep))
return {'V':newV, 'xgi':selt_xgi, 'ygi':selt_ygi}
def run_one(V, rank, outPrefix):
print("=== perform NMF on rank %d ===" % rank)
model = NMF(n_components=rank, init='random', random_state=0, verbose=True)
W = model.fit_transform(V)
H = model.components_
saveW(outPrefix, W)
saveH(outPrefix, H)
print(rank)
print(model.reconstruction_err_)
print(model.n_iter_)
def saveC(prefix, X):
print("=== write matrix C ===")
fileN = [prefix, "C", "mx"]
fileN = '.'.join(fileN)
np.savetxt(fileN, X, fmt = '%g', delimiter="\t")
def saveH(prefix, X):
print("=== write matrix H ===")
fileN = [prefix, "H", "mx"]
fileN = '.'.join(fileN)
np.savetxt(fileN, X, fmt = '%g', delimiter="\t")
def saveW(prefix, X):
print("=== write matrix W ===")
fileN = [prefix, "W", "mx"]
fileN = '.'.join(fileN)
np.savetxt(fileN, X, fmt = '%g', delimiter="\t")
def saveTfidf(prefix, X):
print("=== write if-idf matrix to npz format ===")
X = X.tocoo()
fileN = [prefix, "ifidf", "npz"]
fileN = '.'.join(fileN)
save_npz(fileN, X)
def plotH(prefix, X):
"""
Plot reordered consensus matrix.
:param C: Reordered consensus matrix.
:type C: numpy.ndarray`
:param rank: Factorization rank.
:type rank: `int`
"""
fig = plt.figure(figsize=(5,5), dpi=100);
imshow(X)
set_cmap("RdBu_r")
fileN = [prefix, "H", "png"]
fileN = '.'.join(fileN)
fig.savefig(fileN)
### def compute_tfidf(matrix, prefix): ###
def compute_tfidf(matrix):
"""
compute tfidf
mat: sparse (n x m matrix)
output_fi
"""
print("=== calculate tf-idf ===")
mat = matrix.tocsr().T.astype('float32')
tfidf = TfidfTransformer()
mat = tfidf.fit_transform(mat)
mat = mat.T #similarities = cosine_similarity(mat, dense_output=False)
""" saveTfidf(prefix, mat) """
return mat
def cal_sparseness(X):
print("=== calculate sparseness ===")
vec = list(np.concatenate(X))
absSum = np.sum(np.abs(vec))
n = np.prod(X.shape)
squareSum = np.sum(np.square(vec))
numerator = np.sqrt(n) - (absSum / np.sqrt(squareSum))
denominator = np.sqrt(n) - 1
sparseness = numerator / denominator
return sparseness
def cal_rss_mse(W, H, V):
""" Residual Sum of Squares (RSS) & Mean Square Error (MSE)"""
print("=== calculate Residual Sum of Squares (RSS) & Mean Square Error (MSE) ===")
residualSquare = np.square(W.dot(H) - V)
rss = np.sum(residualSquare)
mse = np.mean(residualSquare)
out = [rss, mse]
return out
def cal_mse(W, H, V):
""" # The mean square error """
print("=== calculate Mean Square Error (MSE) ===")
mse = np.mean(np.square(W.dot(H) - V))
return mse
def cal_evar(rss, V):
print("=== calculate evar ===")
evar = 1 - ( rss / np.sum(V.data**2))
return evar
def cal_featureScore_kim(W):
""" extract feature from W """
print("=== extract feature from W ===")
k = W.shape[1]
m = W.shape[0]
s_list = []
for i in range(m):
rowsum = np.sum(W[i,])
p_iq_x_list = []
for q in range(k):
p_iq = W[i,q] / rowsum
if p_iq != 0:
tmp = p_iq * math.log(p_iq,2)
else:
tmp = 0
p_iq_x_list.append(tmp)
s = 1 + 1/math.log(k,2) * np.sum(p_iq_x_list)
s_list.append(s)
return s_list
def predict_H(H):
""" extract feature from H"""
print("=== extract feature from H ===")
colmax = np.amax(H, axis=0)
colsum = np.sum(H, axis=0)
p = colmax / colsum
idx = H.argmax(axis=0)
out = [idx, p]
return out
def cal_connectivity(H, idx):
""" calculate connectivity matrix """
print("=== calculate connectivity matrix ===")
connectivity_mat = np.zeros((H.shape[1], H.shape[1]))
classN = H.shape[0]
for i in range(classN):
xidx = list(np.concatenate(np.where(idx == i)))
iterables = [ xidx, xidx ]
for t in itertools.product(*iterables):
connectivity_mat[t[0],t[1]] = 1
return connectivity_mat
def cal_silhouette(C):
silhouette = C
return silhouette
def cal_cophenetic(C):
""" calculate cophenetic correlation coefficient """
print("=== calculate cophenetic correlation coefficient ===")
X = C # Original data (1000 observations)
"""Z = linkage(X)"""
Z = fc.linkage_vector(X) # Clustering
orign_dists = fc.pdist(X) # Matrix of original distances between observations
cophe_dists = cophenet(Z) # Matrix of cophenetic distances between observations
corr_coef = np.corrcoef(orign_dists, cophe_dists)[0,1]
return corr_coef
def cal_dispersion(C):
""" calculate dispersion coefficient """
print("=== calculate dispersion coefficient ===")
n = C.shape[1]
corr_disp = np.sum(4 * np.square(np.concatenate(C - 1/2)))/(np.square(n))
return corr_disp
def run_nmf(V, rank, n, prefix):
"""
Run standard NMF on data set. n runs of Standard NMF are performed and obtained consensus matrix
averages all n connectivity matrices.
:param V: Target matrix with gene expression data.
:type V: `sparse.matrix`
:param rank: Factorization rank.
:type rank: `int`
:param n: # of runs
"""
if n == 1:
print("=== run NMF at rank %d ===" % rank)
model = NMF(n_components=rank, init='nndsvd', random_state=0, verbose=True)
W = model.fit_transform(V)
H = model.components_
print("1/%d : reconstruction err: %s (%3d/200 iterations)" % (n, model.reconstruction_err_, model.n_iter_))
o_sparseH = cal_sparseness(H)
o_sparseW = cal_sparseness(W)
o_rss_mse = cal_rss_mse(W,H,V)
o_rss = o_rss_mse[0]
o_mse = o_rss_mse[1]
o_evar = cal_evar(o_rss, V)
o_fsW = cal_featureScore_kim(W)
o_predH = predict_H(H)
out = [rank, n, o_sparseH, o_sparseW, o_rss, o_mse, o_evar]
np.savetxt('.'.join([prefix, "sta.txt"]), out)
np.savetxt('.'.join([prefix, "featureScore_W.txt"]), o_fsW)
np.savetxt('.'.join([prefix, "predict_H.txt"]), o_predH)
saveH(prefix, H)
saveW(prefix, W)
else:
print("=== run NMF at rank %d with %d runs ===" % (rank, n))
out_list = []
consensus = np.zeros((V.shape[1], V.shape[1]))
for i in range(n):
model = NMF(n_components=rank, init='nndsvd', random_state=i, verbose=True)
W = model.fit_transform(V)
H = model.components_
print("%2d/%d : reconstruction err: %s (%3d/200 iterations)" % (i + 1, n, model.reconstruction_err_, model.n_iter_))
consensus += cal_connectivity(H, predict_H(H)[0])
o_sparseH = cal_sparseness(H)
o_sparseW = cal_sparseness(W)
o_rss_mse = cal_rss_mse(W,H,V)
o_rss = o_rss_mse[0]
o_mse = o_rss_mse[1]
o_evar = cal_evar(o_rss, V)
out = [i+1, rank, n, o_sparseH, o_sparseW, o_rss, o_mse, o_evar]
out_list.append(out)
consensus /= n
p_consensus = reorder(consensus)
plot(prefix, p_consensus, rank)
saveC(prefix, p_consensus)
"""o_cophcor = cal_cophenetic(consensus)"""
"""o_disp = cal_dispersion(consensus)"""
np.savetxt('.'.join([prefix, "sta.mx"]), out_list, delimiter="\t")
out2 = list(np.mean(np.squeeze(out_list)[:,1:], axis=0))
"""out2.append(o_cophcor)"""
"""out2.append(o_disp)"""
np.savetxt('.'.join([prefix, "sta.txt"]), out2)
print("perform NMF in nndsvd model")
model = NMF(n_components=rank, init='nndsvd', random_state=0, verbose=True)
W = model.fit_transform(V)
H = model.components_
saveH(prefix, H)
saveW(prefix, W)
o_fsW = cal_featureScore_kim(W)
o_predH = predict_H(H)
np.savetxt('.'.join([prefix, "featureScore_W.txt"]), o_fsW)
np.savetxt('.'.join([prefix, "predict_H.txt"]), np.squeeze(o_predH).T, delimiter="\t")
def run_lda(V, rank, prefix):
""" Run LDA """
lda = LatentDirichletAllocation(n_topics=rank, max_iter=5, learning_method='online', learning_offset=50.,random_state=0).fit(V)
def plot(prefix, C, rank):
"""
Plot reordered consensus matrix.
:param C: Reordered consensus matrix.
:type C: numpy.ndarray`
:param rank: Factorization rank.
:type rank: `int`
"""
fig = plt.figure(figsize=(5,5), dpi=100);
imshow(C)
set_cmap("RdBu_r")
fileN = [prefix, "C", "png"]
fileN = '.'.join(fileN)
fig.savefig(fileN)
def reorder(C):
"""
Reorder consensus matrix.
:param C: Consensus matrix.
:type C: `numpy.ndarray`
"""
Y = 1 - C
Z = linkage(squareform(Y), method='average')
ivl = leaves_list(Z)
ivl = ivl[::-1]
return C[:, ivl][ivl, :]
if __name__ == "__main__":
"""Run NMF and save H & W."""
run()