-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathYaGPT.py
95 lines (84 loc) · 3.15 KB
/
YaGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from langchain.embeddings.base import Embeddings
import time
import requests
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
import requests
import langchain
class YandexGPTEmbeddings(Embeddings):
def __init__(self, iam_token=None, api_key=None, folder_id=None, sleep_interval=1):
self.iam_token = iam_token
self.sleep_interval = sleep_interval
self.api_key = api_key
self.folder_id = folder_id
if self.iam_token:
self.headers = {'Authorization': 'Bearer ' + self.iam_token}
if self.api_key:
self.headers = {'Authorization': 'Api-key ' + self.api_key,
"x-folder-id" : self.folder_id }
def embed_document(self, text):
j = {
"model" : "general:embedding",
"embedding_type" : "EMBEDDING_TYPE_DOCUMENT",
"text": text
}
res = requests.post("https://llm.api.cloud.yandex.net/llm/v1alpha/embedding",
json=j, headers=self.headers)
vec = res.json()['embedding']
return vec
def embed_documents(self, texts, chunk_size = 0):
res = []
for x in texts:
res.append(self.embed_document(x))
time.sleep(self.sleep_interval)
return res
def embed_query(self, text):
j = {
"model" : "general:embedding",
"embedding_type" : "EMBEDDING_TYPE_QUERY",
"text": text
}
res = requests.post("https://llm.api.cloud.yandex.net/llm/v1alpha/embedding",
json=j,headers=self.headers)
vec = res.json()['embedding']
time.sleep(self.sleep_interval)
return vec
class YandexLLM(langchain.llms.base.LLM):
api_key: str = None
iam_token: str = None
folder_id: str = None
max_tokens : int = 1500
temperature : float = 1
instruction_text : str = None
@property
def _llm_type(self) -> str:
return "yagpt"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
headers = { "x-folder-id" : self.folder_id }
if self.iam_token:
headers["Authorization"] = f"Bearer {self.iam_token}"
if self.api_key:
headers["Authorization"] = f"Api-key {self.api_key}"
req = {
"model": "general",
"instruction_text": self.instruction_text,
"request_text": prompt,
"generation_options": {
"max_tokens": self.max_tokens,
"temperature": self.temperature
}
}
res = requests.post("https://llm.api.cloud.yandex.net/llm/v1alpha/instruct",
headers=headers, json=req).json()
return res['result']['alternatives'][0]['text']
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"max_tokens": self.max_tokens, "temperature" : self.temperature }