-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsignal.py
620 lines (518 loc) · 21.3 KB
/
signal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import in_dygraph_mode
from .fft import fft_c2c, fft_c2r, fft_r2c
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.framework import _non_static_mode
from .fluid.layer_helper import LayerHelper
from .tensor.attribute import is_complex
__all__ = [
'stft',
'istft',
]
def frame(x, frame_length, hop_length, axis=-1, name=None):
"""
Slice the N-dimensional (where N >= 1) input into (overlapping) frames.
Args:
x (Tensor): The input data which is a N-dimensional (where N >= 1) Tensor
with shape `[..., seq_length]` or `[seq_length, ...]`.
frame_length (int): Length of the frame and `0 < frame_length <= x.shape[axis]`.
hop_length (int): Number of steps to advance between adjacent frames
and `0 < hop_length`.
axis (int, optional): Specify the axis to operate on the input Tensors. Its
value should be 0(the first dimension) or -1(the last dimension). If not
specified, the last axis is used by default.
Returns:
The output frames tensor with shape `[..., frame_length, num_frames]` if `axis==-1`,
otherwise `[num_frames, frame_length, ...]` where
`num_frames = 1 + (x.shape[axis] - frame_length) // hop_length`
Examples:
.. code-block:: python
import paddle
from paddle.signal import frame
# 1D
x = paddle.arange(8)
y0 = frame(x, frame_length=4, hop_length=2, axis=-1) # [4, 3]
# [[0, 2, 4],
# [1, 3, 5],
# [2, 4, 6],
# [3, 5, 7]]
y1 = frame(x, frame_length=4, hop_length=2, axis=0) # [3, 4]
# [[0, 1, 2, 3],
# [2, 3, 4, 5],
# [4, 5, 6, 7]]
# 2D
x0 = paddle.arange(16).reshape([2, 8])
y0 = frame(x0, frame_length=4, hop_length=2, axis=-1) # [2, 4, 3]
# [[[0, 2, 4],
# [1, 3, 5],
# [2, 4, 6],
# [3, 5, 7]],
#
# [[8 , 10, 12],
# [9 , 11, 13],
# [10, 12, 14],
# [11, 13, 15]]]
x1 = paddle.arange(16).reshape([8, 2])
y1 = frame(x1, frame_length=4, hop_length=2, axis=0) # [3, 4, 2]
# [[[0 , 1 ],
# [2 , 3 ],
# [4 , 5 ],
# [6 , 7 ]],
#
# [4 , 5 ],
# [6 , 7 ],
# [8 , 9 ],
# [10, 11]],
#
# [8 , 9 ],
# [10, 11],
# [12, 13],
# [14, 15]]]
# > 2D
x0 = paddle.arange(32).reshape([2, 2, 8])
y0 = frame(x0, frame_length=4, hop_length=2, axis=-1) # [2, 2, 4, 3]
x1 = paddle.arange(32).reshape([8, 2, 2])
y1 = frame(x1, frame_length=4, hop_length=2, axis=0) # [3, 4, 2, 2]
"""
if axis not in [0, -1]:
raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')
if not isinstance(frame_length, int) or frame_length <= 0:
raise ValueError(
f'Unexpected frame_length: {frame_length}. It should be an positive integer.'
)
if not isinstance(hop_length, int) or hop_length <= 0:
raise ValueError(
f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
)
if _non_static_mode():
if frame_length > x.shape[axis]:
raise ValueError(
f'Attribute frame_length should be less equal than sequence length, '
f'but got ({frame_length}) > ({x.shape[axis]}).'
)
if in_dygraph_mode():
return _C_ops.frame(x, frame_length, hop_length, axis)
else:
op_type = 'frame'
check_variable_and_dtype(
x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
)
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type=op_type,
inputs={'X': x},
attrs={
'frame_length': frame_length,
'hop_length': hop_length,
'axis': axis,
},
outputs={'Out': out},
)
return out
def overlap_add(x, hop_length, axis=-1, name=None):
"""
Reconstructs a tensor consisted of overlap added sequences from input frames.
Args:
x (Tensor): The input data which is a N-dimensional (where N >= 2) Tensor
with shape `[..., frame_length, num_frames]` or
`[num_frames, frame_length ...]`.
hop_length (int): Number of steps to advance between adjacent frames and
`0 < hop_length <= frame_length`.
axis (int, optional): Specify the axis to operate on the input Tensors. Its
value should be 0(the first dimension) or -1(the last dimension). If not
specified, the last axis is used by default.
Returns:
The output frames tensor with shape `[..., seq_length]` if `axis==-1`,
otherwise `[seq_length, ...]` where
`seq_length = (n_frames - 1) * hop_length + frame_length`
Examples:
.. code-block:: python
import paddle
from paddle.signal import overlap_add
# 2D
x0 = paddle.arange(16).reshape([8, 2])
# [[0 , 1 ],
# [2 , 3 ],
# [4 , 5 ],
# [6 , 7 ],
# [8 , 9 ],
# [10, 11],
# [12, 13],
# [14, 15]]
y0 = overlap_add(x0, hop_length=2, axis=-1) # [10]
# [0 , 2 , 5 , 9 , 13, 17, 21, 25, 13, 15]
x1 = paddle.arange(16).reshape([2, 8])
# [[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ],
# [8 , 9 , 10, 11, 12, 13, 14, 15]]
y1 = overlap_add(x1, hop_length=2, axis=0) # [10]
# [0 , 1 , 10, 12, 14, 16, 18, 20, 14, 15]
# > 2D
x0 = paddle.arange(32).reshape([2, 1, 8, 2])
y0 = overlap_add(x0, hop_length=2, axis=-1) # [2, 1, 10]
x1 = paddle.arange(32).reshape([2, 8, 1, 2])
y1 = overlap_add(x1, hop_length=2, axis=0) # [10, 1, 2]
"""
if axis not in [0, -1]:
raise ValueError(f'Unexpected axis: {axis}. It should be 0 or -1.')
if not isinstance(hop_length, int) or hop_length <= 0:
raise ValueError(
f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
)
op_type = 'overlap_add'
if in_dygraph_mode():
out = _C_ops.overlap_add(x, hop_length, axis)
elif paddle.in_dynamic_mode():
attrs = ('hop_length', hop_length, 'axis', axis)
op = getattr(_legacy_C_ops, op_type)
out = op(x, *attrs)
else:
check_variable_and_dtype(
x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], op_type
)
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type=op_type,
inputs={'X': x},
attrs={'hop_length': hop_length, 'axis': axis},
outputs={'Out': out},
)
return out
def stft(
x,
n_fft,
hop_length=None,
win_length=None,
window=None,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
name=None,
):
r"""
Short-time Fourier transform (STFT).
The STFT computes the discrete Fourier transforms (DFT) of short overlapping
windows of the input using this formula:
.. math::
X_t[f] = \sum_{n = 0}^{N-1} \text{window}[n]\ x[t \times H + n]\ e^{-{2 \pi j f n}/{N}}
Where:
- :math:`t`: The :math:`t`-th input window.
- :math:`f`: Frequency :math:`0 \leq f < \text{n_fft}` for `onesided=False`,
or :math:`0 \leq f < \lfloor \text{n_fft} / 2 \rfloor + 1` for `onesided=True`.
- :math:`N`: Value of `n_fft`.
- :math:`H`: Value of `hop_length`.
Args:
x (Tensor): The input data which is a 1-dimensional or 2-dimensional Tensor with
shape `[..., seq_length]`. It can be a real-valued or a complex Tensor.
n_fft (int): The number of input samples to perform Fourier transform.
hop_length (int, optional): Number of steps to advance between adjacent windows
and `0 < hop_length`. Default: `None` (treated as equal to `n_fft//4`)
win_length (int, optional): The size of window. Default: `None` (treated as equal
to `n_fft`)
window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
be center padded to length `n_fft` if `win_length < n_fft`. Default: `None` (
treated as a rectangle window with value equal to 1 of size `win_length`).
center (bool, optional): Whether to pad `x` to make that the
:math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
pad_mode (str, optional): Choose padding pattern when `center` is `True`. See
`paddle.nn.functional.pad` for all padding options. Default: `"reflect"`
normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
Default: `False`
onesided (bool, optional): Control whether to return half of the Fourier transform
output that satisfies the conjugate symmetry condition when input is a real-valued
tensor. It can not be `True` if input is a complex tensor. Default: `True`
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
The complex STFT output tensor with shape `[..., n_fft//2 + 1, num_frames]`
(real-valued input and `onesided` is `True`) or `[..., n_fft, num_frames]`
(`onesided` is `False`)
Examples:
.. code-block:: python
import paddle
from paddle.signal import stft
# real-valued input
x = paddle.randn([8, 48000], dtype=paddle.float64)
y1 = stft(x, n_fft=512) # [8, 257, 376]
y2 = stft(x, n_fft=512, onesided=False) # [8, 512, 376]
# complex input
x = paddle.randn([8, 48000], dtype=paddle.float64) + \
paddle.randn([8, 48000], dtype=paddle.float64)*1j # [8, 48000] complex128
y1 = stft(x, n_fft=512, center=False, onesided=False) # [8, 512, 372]
"""
x_rank = len(x.shape)
assert x_rank in [
1,
2,
], f'x should be a 1D or 2D real tensor, but got rank of x is {x_rank}'
if x_rank == 1: # (batch, seq_length)
x = x.unsqueeze(0)
if hop_length is None:
hop_length = int(n_fft // 4)
assert hop_length > 0, f'hop_length should be > 0, but got {hop_length}.'
if win_length is None:
win_length = n_fft
if _non_static_mode():
assert (
0 < n_fft <= x.shape[-1]
), f'n_fft should be in (0, seq_length({x.shape[-1]})], but got {n_fft}.'
assert (
0 < win_length <= n_fft
), f'win_length should be in (0, n_fft({n_fft})], but got {win_length}.'
if window is not None:
assert (
len(window.shape) == 1 and len(window) == win_length
), f'expected a 1D window tensor of size equal to win_length({win_length}), but got window with shape {window.shape}.'
else:
window = paddle.ones(shape=(win_length,), dtype=x.dtype)
if win_length < n_fft:
pad_left = (n_fft - win_length) // 2
pad_right = n_fft - win_length - pad_left
window = paddle.nn.functional.pad(
window, pad=[pad_left, pad_right], mode='constant'
)
if center:
assert pad_mode in [
'constant',
'reflect',
], 'pad_mode should be "reflect" or "constant", but got "{}".'.format(
pad_mode
)
pad_length = n_fft // 2
# FIXME: Input `x` can be a complex tensor but pad does not support complex input.
x = paddle.nn.functional.pad(
x.unsqueeze(-1),
pad=[pad_length, pad_length],
mode=pad_mode,
data_format="NLC",
).squeeze(-1)
x_frames = frame(x=x, frame_length=n_fft, hop_length=hop_length, axis=-1)
x_frames = x_frames.transpose(
perm=[0, 2, 1]
) # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
x_frames = paddle.multiply(x_frames, window)
norm = 'ortho' if normalized else 'backward'
if is_complex(x_frames):
assert (
not onesided
), 'onesided should be False when input or window is a complex Tensor.'
if not is_complex(x):
out = fft_r2c(
x=x_frames,
n=None,
axis=-1,
norm=norm,
forward=True,
onesided=onesided,
name=name,
)
else:
out = fft_c2c(
x=x_frames, n=None, axis=-1, norm=norm, forward=True, name=name
)
out = out.transpose(perm=[0, 2, 1]) # (batch, n_fft, num_frames)
if x_rank == 1:
out.squeeze_(0)
return out
def istft(
x,
n_fft,
hop_length=None,
win_length=None,
window=None,
center=True,
normalized=False,
onesided=True,
length=None,
return_complex=False,
name=None,
):
r"""
Inverse short-time Fourier transform (ISTFT).
Reconstruct time-domain signal from the giving complex input and window tensor when
nonzero overlap-add (NOLA) condition is met:
.. math::
\sum_{t = -\infty}^{\infty} \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n
Where:
- :math:`t`: The :math:`t`-th input window.
- :math:`N`: Value of `n_fft`.
- :math:`H`: Value of `hop_length`.
Result of `istft` expected to be the inverse of `paddle.signal.stft`, but it is
not guaranteed to reconstruct a exactly realizable time-domain signal from a STFT
complex tensor which has been modified (via masking or otherwise). Therefore, `istft`
gives the `[Griffin-Lim optimal estimate] <https://ieeexplore.ieee.org/document/1164317>`_
(optimal in a least-squares sense) for the corresponding signal.
Args:
x (Tensor): The input data which is a 2-dimensional or 3-dimensional **complex**
Tensor with shape `[..., n_fft, num_frames]`.
n_fft (int): The size of Fourier transform.
hop_length (int, optional): Number of steps to advance between adjacent windows
from time-domain signal and `0 < hop_length < win_length`. Default: `None` (
treated as equal to `n_fft//4`)
win_length (int, optional): The size of window. Default: `None` (treated as equal
to `n_fft`)
window (Tensor, optional): A 1-dimensional tensor of size `win_length`. It will
be center padded to length `n_fft` if `win_length < n_fft`. It should be a
real-valued tensor if `return_complex` is False. Default: `None`(treated as
a rectangle window with value equal to 1 of size `win_length`).
center (bool, optional): It means that whether the time-domain signal has been
center padded. Default: `True`.
normalized (bool, optional): Control whether to scale the output by :math:`1/sqrt(n_{fft})`.
Default: `False`
onesided (bool, optional): It means that whether the input STFT tensor is a half
of the conjugate symmetry STFT tensor transformed from a real-valued signal
and `istft` will return a real-valued tensor when it is set to `True`.
Default: `True`.
length (int, optional): Specify the length of time-domain signal. Default: `None`(
treated as the whole length of signal).
return_complex (bool, optional): It means that whether the time-domain signal is
real-valued. If `return_complex` is set to `True`, `onesided` should be set to
`False` cause the output is complex.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
A tensor of least squares estimation of the reconstructed signal(s) with shape
`[..., seq_length]`
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.signal import stft, istft
paddle.seed(0)
# STFT
x = paddle.randn([8, 48000], dtype=paddle.float64)
y = stft(x, n_fft=512) # [8, 257, 376]
# ISTFT
x_ = istft(y, n_fft=512) # [8, 48000]
np.allclose(x, x_) # True
"""
check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'istft')
x_rank = len(x.shape)
assert x_rank in [
2,
3,
], 'x should be a 2D or 3D complex tensor, but got rank of x is {}'.format(
x_rank
)
if x_rank == 2: # (batch, n_fft, n_frames)
x = x.unsqueeze(0)
if hop_length is None:
hop_length = int(n_fft // 4)
if win_length is None:
win_length = n_fft
# Assure no gaps between frames.
assert (
0 < hop_length <= win_length
), 'hop_length should be in (0, win_length({})], but got {}.'.format(
win_length, hop_length
)
assert (
0 < win_length <= n_fft
), 'win_length should be in (0, n_fft({})], but got {}.'.format(
n_fft, win_length
)
n_frames = x.shape[-1]
fft_size = x.shape[-2]
if _non_static_mode():
if onesided:
assert (
fft_size == n_fft // 2 + 1
), 'fft_size should be equal to n_fft // 2 + 1({}) when onesided is True, but got {}.'.format(
n_fft // 2 + 1, fft_size
)
else:
assert (
fft_size == n_fft
), 'fft_size should be equal to n_fft({}) when onesided is False, but got {}.'.format(
n_fft, fft_size
)
if window is not None:
assert (
len(window.shape) == 1 and len(window) == win_length
), 'expected a 1D window tensor of size equal to win_length({}), but got window with shape {}.'.format(
win_length, window.shape
)
else:
window_dtype = (
paddle.float32
if x.dtype in [paddle.float32, paddle.complex64]
else paddle.float64
)
window = paddle.ones(shape=(win_length,), dtype=window_dtype)
if win_length < n_fft:
pad_left = (n_fft - win_length) // 2
pad_right = n_fft - win_length - pad_left
# FIXME: Input `window` can be a complex tensor but pad does not support complex input.
window = paddle.nn.functional.pad(
window, pad=[pad_left, pad_right], mode='constant'
)
x = x.transpose(
perm=[0, 2, 1]
) # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
norm = 'ortho' if normalized else 'backward'
if return_complex:
assert (
not onesided
), 'onesided should be False when input(output of istft) or window is a complex Tensor.'
out = fft_c2c(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
else:
assert not is_complex(
window
), 'Data type of window should not be complex when return_complex is False.'
if onesided is False:
x = x[:, :, : n_fft // 2 + 1]
out = fft_c2r(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
out = paddle.multiply(out, window).transpose(
perm=[0, 2, 1]
) # (batch, n_fft, num_frames)
out = overlap_add(
x=out, hop_length=hop_length, axis=-1
) # (batch, seq_length)
window_envelop = overlap_add(
x=paddle.tile(
x=paddle.multiply(window, window).unsqueeze(0),
repeat_times=[n_frames, 1],
).transpose(
perm=[1, 0]
), # (n_fft, num_frames)
hop_length=hop_length,
axis=-1,
) # (seq_length, )
if length is None:
if center:
out = out[:, (n_fft // 2) : -(n_fft // 2)]
window_envelop = window_envelop[(n_fft // 2) : -(n_fft // 2)]
else:
if center:
start = n_fft // 2
else:
start = 0
out = out[:, start : start + length]
window_envelop = window_envelop[start : start + length]
# Check whether the Nonzero Overlap Add (NOLA) constraint is met.
if _non_static_mode() and window_envelop.abs().min().item() < 1e-11:
raise ValueError(
'Abort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).'
)
out = out / window_envelop
if x_rank == 2:
out.squeeze_(0)
return out