-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
66 lines (55 loc) · 2.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
This script is a simplified version of the training script in detectron2/tools.
"""
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.utils.logger import setup_logger
# for inpainting
from deepfill.config import add_inpainter_config
from deepfill.train_loop import InpainterTrainer
from deepfill import inpnet, dataset
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_inpainter_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts) # modify the args by using command line
cfg.freeze()
default_setup(cfg, args)
# reproducibility
# torch.backends.cudnn.deterministic = True # this will hurt the speed
# Setup logger for "ws_seg", "inpainter", and "seg_gan" sub module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="deepfill")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = InpainterTrainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
) # resume from the latest checkpoint, or load pre-trained parameters
res = InpainterTrainer.test(cfg, model)
# Don't know the effect of following codes
# if comm.is_main_process():
# verify_results(cfg, res)
return res
trainer = InpainterTrainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
args = parser.parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)