-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlora_infer_yago_rel.py
128 lines (126 loc) · 4.05 KB
/
lora_infer_yago_rel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
#os.system("pip install datasets")
#os.system("pip install deepspeed")
#os.system("pip install accelerate")
#os.system("pip install transformers>=4.28.0")
import sys
import torch
import argparse
import pandas as pd
from peft import PeftModel
import transformers
import gradio as gr
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("models/LLaMA-HF/tokenizer/")
LOAD_8BIT = False
BASE_MODEL = "models/LLaMA-HF/llama-13b"
LORA_WEIGHTS = "models/llama-13b-lora-yago-rel"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
# torch_dtype=torch.float16,
# device_map="auto",
).half().cuda()
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
# torch_dtype=torch.float16,
).half().cuda()
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
# if not LOAD_8BIT:
# model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=256,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
if __name__ == "__main__":
# testing code for readme
parser = argparse.ArgumentParser()
parser.add_argument("--finput", type=str, default="data/YAGO3-10/test_instructions_llama_rel.csv")
parser.add_argument("--foutput", type=str, default="data/YAGO3-10/pred_instructions_llama_rel13b.csv")
args = parser.parse_args()
total_input = pd.read_csv(args.finput, header=0, sep='\t')
instruct, pred = [], []
for index, data in total_input.iterrows():
cur_instruct = data['prompt']
cur_response = evaluate(cur_instruct)
pred.append(cur_response)
instruct.append(cur_instruct)
output = pd.DataFrame({'prompt': instruct, 'generated': pred})
output.to_csv(args.foutput, header=True, index=False)