-
Notifications
You must be signed in to change notification settings - Fork 437
/
visualize_words.py
46 lines (40 loc) · 1.22 KB
/
visualize_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from matplotlib.backends.backend_pdf import PdfPages
from sklearn.manifold import TSNE
from matplotlib import pyplot as plt
import numpy as np
f = open('data/ohsumed_word_vectors_1.txt', 'r')
embedding_lines = f.readlines()
f.close()
target_names = set()
labels = []
docs = []
for i in range(len(embedding_lines)):
line = embedding_lines[i].strip()
temp = line.split('\t')
emb_str = embedding_lines[i].strip().split()
values_str_list = emb_str[1:]
values = [float(x) for x in values_str_list]
label = np.argmax(values)
docs.append(values)
target_names.add(label)
labels.append(label)
target_names = list(target_names)
label = np.array(labels)
fea = TSNE(n_components=2).fit_transform(docs)
pdf = PdfPages('ohsumed_gcn_word_2nd_layer.pdf')
cls = np.unique(label)
# cls=range(10)
fea_num = [fea[label == i] for i in cls]
for i, f in enumerate(fea_num):
if cls[i] in range(10):
plt.scatter(f[:, 0], f[:, 1], label=cls[i], marker='+')
else:
plt.scatter(f[:, 0], f[:, 1], label=cls[i])
# plt.legend(ncol=2, )
# plt.legend(ncol=5,loc='upper center',bbox_to_anchor=(0.48, -0.08),fontsize=11)
# plt.ylim([-20,35])
# plt.title(md_file)
plt.tight_layout()
pdf.savefig()
plt.show()
pdf.close()