-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcheckpoints.py
executable file
·74 lines (66 loc) · 3.07 KB
/
checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
""" Defines functions used for checkpointing models and storing model scores """
import os
import torch
import shutil
from collections import OrderedDict
def ordered_load_state(model, chkpoint):
"""
Wrapping the model with parallel/dataparallel seems to
change the variable names for the states
This attempts to load normally and otherwise aligns the labels
of the two statese and tries again.
"""
try:
model.load_state_dict(chkpoint)
except KeyError: # assume order is the same, and use new labels
print('keys do not match model, trying to align')
modelkeys = model.state_dict().keys()
fixed = OrderedDict([(z,y)
for (x,y),z in zip(chkpoint.items(), modelkeys)])
model.load_state_dict(fixed)
def load(args, base_model, logits_model, base_optimizer, logits_optimizer):
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
chkpoint = torch.load(args.resume)
if isinstance(chkpoint, dict) and 'base_state_dict' in chkpoint:
args.start_epoch = chkpoint['epoch']
mAP = chkpoint['mAP']
ordered_load_state(base_model, chkpoint['base_state_dict'])
ordered_load_state(logits_model, chkpoint['logits_state_dict'])
base_optimizer.load_state_dict(chkpoint['base_optimizer'])
logits_optimizer.load_state_dict(chkpoint['logits_optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, chkpoint['epoch']))
return mAP
else:
ordered_load_state(model, chkpoint)
print("=> loaded checkpoint '{}' (just weights)"
.format(args.resume))
return 0
else:
#raise ValueError("no checkpoint found at '{}'".format(args.resume))
#raise ValueError("no checkpoint found at '{}'".format(args.resume))
print("=> no checkpoint found, starting from scratch: '{}'".format(args.resume))
return 0
def score_file(scores, filename):
with open(filename, 'w') as f:
for key, val in sorted(scores.items()):
f.write('{} {}\n'.format(key, val))
def save(epoch, args, base_model, logits_model, base_optimizer, logits_optimizer, is_best, scores):
state = {
'epoch': epoch + 1,
'rgb_arch': args.rgb_arch,
'base_state_dict': base_model.state_dict(),
'logits_state_dict': logits_model.state_dict(),
'mAP': scores['mAP'],
'base_optimizer': base_optimizer.state_dict(),
'logits_optimizer': logits_optimizer.state_dict(),
}
filename = "{}/model.pth.tar".format(args.cache)
score_file(scores, "{}/model_{:03d}.txt".format(args.cache, epoch+1))
torch.save(state, filename)
if is_best:
bestname = "{}/model_best.pth.tar".format(args.cache)
score_file(scores, "{}/model_best.txt".format(args.cache, epoch+1))
shutil.copyfile(filename, bestname)