
Yatima
A language for the dencentralized web 

john@yatima.io



Part I: Motivation



Software Eats the Economy

Digital PresencePhysical Presence

Distributed LedgersCentral Counterparties

CryptographyPaper Contracts

ImplementationJurisdiction

This trend is just beginning
Blockchain = $10^11, Real Estate = $10^15



Problem: Software Breaks
●Leftpad: 2 hours global JS downtime
●Heartbleed: >$500 million
●The DAO: >$50 million
●Parity Multisig: >$100 million
●Knight Capital: >$500 million
●Meltdown/Spectre, 737-Max, Flash 
Crash, Mt Gox, etc. etc. etc...

Software Failures are unnatural disasters
Cost to US economy is trillions/year



Solution: Strong Types

Software Mathematics

Type signature:
apply<P,Q>(f: P -> Q, x: P): Q {..}

 Theorem: 
P → Q, P  Q⊢

Program: |f,x| f(x)     Proof:

Type-checking programs Verifying proof correctness

Specification: 
“Our requirements are ...”

Abstract:
“In this paper we will prove ...”

P T T F F

Q T F T F

P→Q T F T T

Code is Math (modulo syntax)



Problem:
People Don’t Like Math



Solution: Syntax Genricity
// Procedural style like C, C++, JavaScript, Rust
apply<P,Q>(f: P -> Q, x: P): Q { 
  f(x) 
}

;;; S-expression style like  Lisp
(declare-type apply ((P Type) (Q Type) (f (fun P Q)) (x P)) Q) 
(defun apply (P Q f x) (f x))

–- Equational-style like Haskell, Idris, OCaml, Lean
apply : (P: Type) -> (Q: Type) -> (P -> Q) -> P -> Q 
apply f x = f x

// Yatima-Core syntax
def apply (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P): Q 
  := f x

def apply: ∀ (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P) -> Q 
  := λ f x => x



Solution: Syntax Genricity
// Procedural style like C, C++, JavaScript, Rust
type List<A> {
  nil,
  cons(x: A, xs: List<A>),
}

;;; S-expression style like Lisp
(deftype List (A)
  (nil)
  (cons (x A) (xs (List A)))
) 

–- Equational-style like Haskell, Idris, OCaml, Lean
data List A
  | Nil
  | Cons (x: A) (xs: List A)

data List A where
  Nil : List A
  Cons (x: A) (xs: List A) : List A





Problem:
People Don’t Like Code 

Either



Try to Solve Pain Points
● Focus on determinism over raw performance

● Same language everywhere (web, metal, ledger)

● Garbage-collection, but opt-out (linear types)

● Great languages have great communities (e.g. Rust)

● Build tools need to be safer and less arcane

● Docs need to be compiler-checked, web-rendered, type-
indexed, searcheable, etc.

● Editor integration (language needs to run in editor)

● Different frontend syntaxes need to be interoperable



Part II: Implementation



Yatima Core
// 14 core constructors
pub enum Term {
  Var(String, u64),        // local variables (de bruijn indexed)
  Lam(String, Box<Term>),  // lambda abstraction
  App(Box<(Term,Term)>),   // application
  Ref(String, Link, Link), // global content-addressed reference
  Lit(Literal),            // data literal, like Text, Char, Integer
  Lty(LitType),            // type of Literals 
  Opr(PrimOp),             // primitive operations over Literals.
  Let(bool, Uses, String, Box<(Term,Term,Term)>), // local definition
  All(Uses, String, Box<(Term,Term)>), // dependent function type
  Slf(String, Box<Term>),  // self-type type declaration
  Dat(Box<Term>),          // self-type constructor (datatype builder)
  Cse(Box<Term>),          // self-type eliminator (case expression)
  Typ,                     // the type of types is the type “Type”
  Ann(Box<(Term,Term)>),   // type annotation
}
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λ-Calculus + Content Addressing + Primitives + 
Dependent/Self/Substructural Type System



 λ-Calculus
● Invented in 1930s by Alonzo Church

● Universal model of computing 

(Church-Turing Thesis)

● Foundation of functional programming

(λf.λx.(f x))
App

Lam Var



Content-Addressing
● Store data by content rather than location

● Often using cryptographic hash functions

● e.g. Git, IPFS, Plan 9, Nix, Tahoe-LAFS, Unison

● Allows for peer-to-peer storage/lookup via a 
distributed hash table (e.g. Kademlia)

● Hashes are proofs of data immutability.

● “Code is Data”: Provably reproducible computation 

 ⅄ #IVdLcYHSv5ipV8zpyTz28P2F8FpMLAGt5rncAXs6AxHcgvpsZH 
→ (package MyPackage (imports (...)) (defs (...)))



Primitives
● Common datatypes like Text, Char, Integer, etc.

● Efficient low-level operations over those types

● Lazy expansion/compression of Literals to/from inductive 
datatypes.

● Dependent typing allows safe overloading

● Statically prevents overlow, div-by-zero

● Extensible, since they add no expressive power

● Exposed to user in addition to pure types and functions 
(unlike the “jets” approach used by Simplicity and Urbit)

 ⅄ #cat “foo” “bar” :: #Text
→ “foobar”



Dependent Types
● Function return type can change depending on input

● Allows for expressive “proofs-as-programs”

● Used in languages like Idris, Agda, Coq, Lean

● Can use term language in types, at the cost of 
undecidable checking

● Historically complex to implement in a practical 
programming language

 ⅄ :type List.head
→ ∀ (A: Type) (x: List A) -> Subset (List A) List.NotEmpty 



Substructural Types
● Functions can statically restrict runtime usage of 
arguments

● Used in Idris, Haskell, Rust, Clean

● Allows for safe resource usage, like files, locks, 
memory (like Rust borrow checker).

● Historically difficult to integrate with dependent 
types (Quantitative Type Theory)

● Yatima has a {0,&,1,ω} QTT usage multiplicity rig

 ⅄ :type (λ x => (x,x) :: ∀ (1 x: Int) -> Pair Int Int)
→ Error: Can’t use linear variable ‘x’ twice



Self-Types
● Based on paper “Self Types for Dependently Typed 
Lambda Encodings” (Fu & Stump, 2014)

● Extends dependent types so that an expression’s 
type can depend on its value: @self x :: P self

● Used in the Cedille programming language and prover

● Allows construction of inductive datatypes

● Alternative models such as the Calculus of 
Inductive Constructions are much more complex



Datatype Encodings
// A datatype is encoded as its elimination function
// Identical to `data Bool = True | False`
def Bool : Type :=
  @self ∀
  (0 P    : ∀ Bool -> Type)
  (& true : P (data λ P t f => t))
  (& false: P (data λ P t f => f))
  -> P self

// Constructors
def true : Bool := data λ P t f => t
def false: Bool := data λ P t f => f

// Example: boolean negation
def not (a: Bool): Bool := 
 (case a) 
   (λ self => Bool) // P 
   false            // P self == P true == Bool 
   true             // P self == P false  == Bool



Valus: A λ-graph VM
● (λ-Calculus + Content Addressing + Primitives + 
Dependent/Self/Substructural Types) interpreter

● Based on paper “Bottom-up β-reduction: uplinks and 
λ-DAGs” (Shivers & Wand, 2010)

● Fully lazy, efficient read-back, sharing

● Rust implementation compiles to x86 & WASM

● Yatima’s typechecker, can also act as runtime 

– (Or get x86/WASM binary via Chez Scheme/Schism)

● Better time/space computational cost metrics



“Bottom-up β-reduction: uplinks and λ-DAGs” (Shivers & Wand, 2010)



Hash-Expressions
● A new serialization format base on Rivest’s 
Canonical S-Expressions (csexpr → hashexpr)

● Replaces IPFS’s Multiformats/IPLD/CBOR/JSON stack

● Supports content-addressing of binary blobs, but is 
extensible to other types of serial data

● Extremely byte-efficient (based on MessagePack)

● Simple text format, with parsing and printing

● Encodes Yatima’s packages and Abstract Syntax Tree

● Will integrate with Rust’s Serde library in future



Hash-Expression encoding
// Yatima Definition, core syntax
def apply: ∀ (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P) -> Q 
  := λ f x => x

// Yatima Definition, hash-expression
(def apply "" 
  (forall 0 P Type (forall 0 Q Type (forall ω f (forall ω P Q (forall ω x P Q)))) 
  (lambda P (lambda Q (lambda f (lambda x (f x)))))
)

// “desaturated” definition, separating computationally relevant and irrelevant data
(def apply "" 
  #IvdLcYPuGB2yFswYBwSspoZswjwgYE8tYDnAJUJiGSWn542PPj // link to type anonymous AST
  #IvdLcYUZMwj3FVCuzfzNjGG4gprus7faJ7S8y8rycst3gsHiju // link to term anonymous AST
  // type name-metadata
  (ctor leaf () (bind P (ctor leaf () (bind Q 
    (ctor leaf (ctor leaf leaf leaf) (bind f
    (ctor leaf leaf (bind x leaf)))
  ))))
  // term name-metadata of `λ f x => f x`
  (ctor (bind P (ctor (bind Q (ctor (bind f (ctor (bind x 
    (ctor (ctor leaf) (ctor leaf))
  ))))))))
)
// anonymous AST of `λ f x => f x`
// #IvdLcYUZMwj3FVCuzfzNjGG4gprus7faJ7S8y8rycst3gsHiju
(ctor lam (bind (ctor lam (bind (ctor lam (bind (ctor lam (bind 
  (ctor app (ctor var 1) (ctor var 0))
))))))))



Hashspace
● A data store for hash-expressions

● The backend for Yatima’s package management
– Reproducible, Reliable, Atomic builds

● Local cache in filesystem like NixOS /store/

● HTTP API for put/get on remote server

● Will add DHT for p2p-sharing like libp2p/IPFS

● Future features: 
– cloning of package sources
– AST-aware merging/diffing



Part III: Integration
(Discussion, Q&A)
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