
Yatima
A language for the dencentralized web

john@yatima.io

Part I: Motivation

Software Eats the Economy

Digital PresencePhysical Presence

Distributed LedgersCentral Counterparties

CryptographyPaper Contracts

ImplementationJurisdiction

This trend is just beginning
Blockchain = $10^11, Real Estate = $10^15

Problem: Software Breaks
●Leftpad: 2 hours global JS downtime
●Heartbleed: >$500 million
●The DAO: >$50 million
●Parity Multisig: >$100 million
●Knight Capital: >$500 million
●Meltdown/Spectre, 737-Max, Flash
Crash, Mt Gox, etc. etc. etc...

Software Failures are unnatural disasters
Cost to US economy is trillions/year

Solution: Strong Types

Software Mathematics

Type signature:
apply<P,Q>(f: P -> Q, x: P): Q {..}

 Theorem:
P → Q, P Q⊢

Program: |f,x| f(x) Proof:

Type-checking programs Verifying proof correctness

Specification:
“Our requirements are ...”

Abstract:
“In this paper we will prove ...”

P T T F F

Q T F T F

P→Q T F T T

Code is Math (modulo syntax)

Problem:
People Don’t Like Math

Solution: Syntax Genricity
// Procedural style like C, C++, JavaScript, Rust
apply<P,Q>(f: P -> Q, x: P): Q {
 f(x)
}

;;; S-expression style like Lisp
(declare-type apply ((P Type) (Q Type) (f (fun P Q)) (x P)) Q)
(defun apply (P Q f x) (f x))

–- Equational-style like Haskell, Idris, OCaml, Lean
apply : (P: Type) -> (Q: Type) -> (P -> Q) -> P -> Q
apply f x = f x

// Yatima-Core syntax
def apply (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P): Q
 := f x

def apply: ∀ (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P) -> Q
 := λ f x => x

Solution: Syntax Genricity
// Procedural style like C, C++, JavaScript, Rust
type List<A> {
 nil,
 cons(x: A, xs: List<A>),
}

;;; S-expression style like Lisp
(deftype List (A)
 (nil)
 (cons (x A) (xs (List A)))
)

–- Equational-style like Haskell, Idris, OCaml, Lean
data List A
 | Nil
 | Cons (x: A) (xs: List A)

data List A where
 Nil : List A
 Cons (x: A) (xs: List A) : List A

Problem:
People Don’t Like Code

Either

Try to Solve Pain Points
● Focus on determinism over raw performance

● Same language everywhere (web, metal, ledger)

● Garbage-collection, but opt-out (linear types)

● Great languages have great communities (e.g. Rust)

● Build tools need to be safer and less arcane

● Docs need to be compiler-checked, web-rendered, type-
indexed, searcheable, etc.

● Editor integration (language needs to run in editor)

● Different frontend syntaxes need to be interoperable

Part II: Implementation

Yatima Core
// 14 core constructors
pub enum Term {
 Var(String, u64), // local variables (de bruijn indexed)
 Lam(String, Box<Term>), // lambda abstraction
 App(Box<(Term,Term)>), // application
 Ref(String, Link, Link), // global content-addressed reference
 Lit(Literal), // data literal, like Text, Char, Integer
 Lty(LitType), // type of Literals
 Opr(PrimOp), // primitive operations over Literals.
 Let(bool, Uses, String, Box<(Term,Term,Term)>), // local definition
 All(Uses, String, Box<(Term,Term)>), // dependent function type
 Slf(String, Box<Term>), // self-type type declaration
 Dat(Box<Term>), // self-type constructor (datatype builder)
 Cse(Box<Term>), // self-type eliminator (case expression)
 Typ, // the type of types is the type “Type”
 Ann(Box<(Term,Term)>), // type annotation
}

Yatima Core
// 14 core constructors
pub enum Term {
 Var(String, u64), // local variables (de bruijn indexed)
 Lam(String, Box<Term>), // lambda abstraction
 App(Box<(Term,Term)>), // application
 Ref(String, Link, Link), // global content-addressed reference
 Lit(Literal), // data literal, like Text, Char, Integer
 Lty(LitType), // type of Literals
 Opr(PrimOp), // primitive operations over Literals.
 Let(bool, Uses, String, Box<(Term,Term,Term)>), // local definition
 All(Uses, String, Box<(Term,Term)>), // dependent function type
 Slf(String, Box<Term>), // self-type type declaration
 Dat(Box<Term>), // self-type constructor (datatype builder)
 Cse(Box<Term>), // self-type eliminator (case expression)
 Typ, // the type of types is the type “Type”
 Ann(Box<(Term,Term)>), // type annotation
}

λ-Calculus + Content Addressing + Primitives +
Dependent/Self/Substructural Type System

 λ-Calculus
● Invented in 1930s by Alonzo Church

● Universal model of computing

(Church-Turing Thesis)

● Foundation of functional programming

(λf.λx.(f x))
App

Lam Var

Content-Addressing
● Store data by content rather than location

● Often using cryptographic hash functions

● e.g. Git, IPFS, Plan 9, Nix, Tahoe-LAFS, Unison

● Allows for peer-to-peer storage/lookup via a
distributed hash table (e.g. Kademlia)

● Hashes are proofs of data immutability.

● “Code is Data”: Provably reproducible computation

 ⅄ #IVdLcYHSv5ipV8zpyTz28P2F8FpMLAGt5rncAXs6AxHcgvpsZH
→ (package MyPackage (imports (...)) (defs (...)))

Primitives
● Common datatypes like Text, Char, Integer, etc.

● Efficient low-level operations over those types

● Lazy expansion/compression of Literals to/from inductive
datatypes.

● Dependent typing allows safe overloading

● Statically prevents overlow, div-by-zero

● Extensible, since they add no expressive power

● Exposed to user in addition to pure types and functions
(unlike the “jets” approach used by Simplicity and Urbit)

 ⅄ #cat “foo” “bar” :: #Text
→ “foobar”

Dependent Types
● Function return type can change depending on input

● Allows for expressive “proofs-as-programs”

● Used in languages like Idris, Agda, Coq, Lean

● Can use term language in types, at the cost of
undecidable checking

● Historically complex to implement in a practical
programming language

 ⅄ :type List.head
→ ∀ (A: Type) (x: List A) -> Subset (List A) List.NotEmpty

Substructural Types
● Functions can statically restrict runtime usage of
arguments

● Used in Idris, Haskell, Rust, Clean

● Allows for safe resource usage, like files, locks,
memory (like Rust borrow checker).

● Historically difficult to integrate with dependent
types (Quantitative Type Theory)

● Yatima has a {0,&,1,ω} QTT usage multiplicity rig

 ⅄ :type (λ x => (x,x) :: ∀ (1 x: Int) -> Pair Int Int)
→ Error: Can’t use linear variable ‘x’ twice

Self-Types
● Based on paper “Self Types for Dependently Typed
Lambda Encodings” (Fu & Stump, 2014)

● Extends dependent types so that an expression’s
type can depend on its value: @self x :: P self

● Used in the Cedille programming language and prover

● Allows construction of inductive datatypes

● Alternative models such as the Calculus of
Inductive Constructions are much more complex

Datatype Encodings
// A datatype is encoded as its elimination function
// Identical to `data Bool = True | False`
def Bool : Type :=
 @self ∀
 (0 P : ∀ Bool -> Type)
 (& true : P (data λ P t f => t))
 (& false: P (data λ P t f => f))
 -> P self

// Constructors
def true : Bool := data λ P t f => t
def false: Bool := data λ P t f => f

// Example: boolean negation
def not (a: Bool): Bool :=
 (case a)
 (λ self => Bool) // P
 false // P self == P true == Bool
 true // P self == P false == Bool

Valus: A λ-graph VM
● (λ-Calculus + Content Addressing + Primitives +
Dependent/Self/Substructural Types) interpreter

● Based on paper “Bottom-up β-reduction: uplinks and
λ-DAGs” (Shivers & Wand, 2010)

● Fully lazy, efficient read-back, sharing

● Rust implementation compiles to x86 & WASM

● Yatima’s typechecker, can also act as runtime

– (Or get x86/WASM binary via Chez Scheme/Schism)

● Better time/space computational cost metrics

“Bottom-up β-reduction: uplinks and λ-DAGs” (Shivers & Wand, 2010)

Hash-Expressions
● A new serialization format base on Rivest’s
Canonical S-Expressions (csexpr → hashexpr)

● Replaces IPFS’s Multiformats/IPLD/CBOR/JSON stack

● Supports content-addressing of binary blobs, but is
extensible to other types of serial data

● Extremely byte-efficient (based on MessagePack)

● Simple text format, with parsing and printing

● Encodes Yatima’s packages and Abstract Syntax Tree

● Will integrate with Rust’s Serde library in future

Hash-Expression encoding
// Yatima Definition, core syntax
def apply: ∀ (P: Type) (Q: Type) (f: ∀ P -> Q) (x: P) -> Q
 := λ f x => x

// Yatima Definition, hash-expression
(def apply ""
 (forall 0 P Type (forall 0 Q Type (forall ω f (forall ω P Q (forall ω x P Q))))
 (lambda P (lambda Q (lambda f (lambda x (f x)))))
)

// “desaturated” definition, separating computationally relevant and irrelevant data
(def apply ""
 #IvdLcYPuGB2yFswYBwSspoZswjwgYE8tYDnAJUJiGSWn542PPj // link to type anonymous AST
 #IvdLcYUZMwj3FVCuzfzNjGG4gprus7faJ7S8y8rycst3gsHiju // link to term anonymous AST
 // type name-metadata
 (ctor leaf () (bind P (ctor leaf () (bind Q
 (ctor leaf (ctor leaf leaf leaf) (bind f
 (ctor leaf leaf (bind x leaf)))
))))
 // term name-metadata of `λ f x => f x`
 (ctor (bind P (ctor (bind Q (ctor (bind f (ctor (bind x
 (ctor (ctor leaf) (ctor leaf))
))))))))
)
// anonymous AST of `λ f x => f x`
// #IvdLcYUZMwj3FVCuzfzNjGG4gprus7faJ7S8y8rycst3gsHiju
(ctor lam (bind (ctor lam (bind (ctor lam (bind (ctor lam (bind
 (ctor app (ctor var 1) (ctor var 0))
))))))))

Hashspace
● A data store for hash-expressions

● The backend for Yatima’s package management
– Reproducible, Reliable, Atomic builds

● Local cache in filesystem like NixOS /store/

● HTTP API for put/get on remote server

● Will add DHT for p2p-sharing like libp2p/IPFS

● Future features:
– cloning of package sources
– AST-aware merging/diffing

Part III: Integration
(Discussion, Q&A)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

