diff --git a/examples/regular/models/creditcard_cgan.py b/examples/regular/models/creditcard_cgan.py index 9522b3b4..052163ca 100644 --- a/examples/regular/models/creditcard_cgan.py +++ b/examples/regular/models/creditcard_cgan.py @@ -21,7 +21,6 @@ 'V3', 'V22', 'V6', 'V20', 'V27', 'V16', 'V13', 'V25', 'V24', 'V18', 'V2', 'V1', 'V5', 'V15', 'V9', 'V23', 'Class'] processed_data = data[ sorted_cols ].copy() -processed_data['Class'] = processed_data['Class'].apply(lambda x: 1 if x == "'1'" else 0) #For the purpose of this example we will only synthesize the minority class train_data = processed_data.loc[processed_data['Class'] == 1].copy() @@ -47,7 +46,7 @@ beta_2 = 0.9 log_step = 100 -epochs = 500 + 1 +epochs = 2 + 1 learning_rate = 5e-4 models_dir = '../cache' diff --git a/examples/regular/models/creditcard_cramergan.py b/examples/regular/models/creditcard_cramergan.py index 0eef4acd..a05782d8 100644 --- a/examples/regular/models/creditcard_cramergan.py +++ b/examples/regular/models/creditcard_cramergan.py @@ -22,7 +22,6 @@ print('Dataset columns: {}'.format(num_cols)) sorted_cols = ['V14', 'V4', 'V10', 'V17', 'V12', 'V26', 'Amount', 'V21', 'V8', 'V11', 'V7', 'V28', 'V19', 'V3', 'V22', 'V6', 'V20', 'V27', 'V16', 'V13', 'V25', 'V24', 'V18', 'V2', 'V1', 'V5', 'V15', 'V9', 'V23', 'Class'] processed_data = data[ sorted_cols ].copy() -processed_data['Class'] = processed_data['Class'].apply(lambda x: 1 if x == "'1'" else 0) #For the purpose of this example we will only synthesize the minority class train_data = processed_data.loc[processed_data['Class'] == 1].copy() @@ -45,7 +44,7 @@ batch_size = 128 log_step = 100 -epochs = 2+1 +epochs = 500+1 learning_rate = 5e-4 beta_1 = 0.5 beta_2 = 0.9 diff --git a/examples/regular/models/creditcard_ctgan.py b/examples/regular/models/creditcard_ctgan.py index a8a51fe0..e79f7a36 100644 --- a/examples/regular/models/creditcard_ctgan.py +++ b/examples/regular/models/creditcard_ctgan.py @@ -21,7 +21,6 @@ 'V3', 'V22', 'V6', 'V20', 'V27', 'V16', 'V13', 'V25', 'V24', 'V18', 'V2', 'V1', 'V5', 'V15', 'V9', 'V23', 'Class'] processed_data = data[ sorted_cols ].copy() -processed_data['Class'] = processed_data['Class'].apply(lambda x: 1 if x == "'1'" else 0) # For the purpose of this example we will only synthesize the minority class train_data = processed_data.loc[processed_data['Class'] == 1].copy() diff --git a/examples/regular/models/creditcard_cwgangp.py b/examples/regular/models/creditcard_cwgangp.py index 5f9871f6..911f390e 100644 --- a/examples/regular/models/creditcard_cwgangp.py +++ b/examples/regular/models/creditcard_cwgangp.py @@ -17,7 +17,6 @@ print('Dataset columns: {}'.format(num_cols)) sorted_cols = ['V14', 'V4', 'V10', 'V17', 'V12', 'V26', 'Amount', 'V21', 'V8', 'V11', 'V7', 'V28', 'V19', 'V3', 'V22', 'V6', 'V20', 'V27', 'V16', 'V13', 'V25', 'V24', 'V18', 'V2', 'V1', 'V5', 'V15', 'V9', 'V23', 'Class'] processed_data = data[ sorted_cols ].copy() -processed_data['Class'] = processed_data['Class'].apply(lambda x: 1 if x == "'1'" else 0) #For the purpose of this example we will only synthesize the minority class train_data = processed_data.loc[processed_data['Class'] == 1].copy() diff --git a/examples/regular/models/creditcard_wgan.py b/examples/regular/models/creditcard_wgan.py index 74536cb4..073ba138 100644 --- a/examples/regular/models/creditcard_wgan.py +++ b/examples/regular/models/creditcard_wgan.py @@ -19,7 +19,6 @@ print('Dataset columns: {}'.format(num_cols)) sorted_cols = ['V14', 'V4', 'V10', 'V17', 'V12', 'V26', 'Amount', 'V21', 'V8', 'V11', 'V7', 'V28', 'V19', 'V3', 'V22', 'V6', 'V20', 'V27', 'V16', 'V13', 'V25', 'V24', 'V18', 'V2', 'V1', 'V5', 'V15', 'V9', 'V23', 'Class'] processed_data = data[ sorted_cols ].copy() -processed_data['Class'] = processed_data['Class'].apply(lambda x: 1 if x == "'1'" else 0) #For the purpose of this example we will only synthesize the minority class train_data = processed_data.loc[processed_data['Class'] == 1].copy() @@ -41,7 +40,7 @@ batch_size = 128 log_step = 100 -epochs = 300+1 +epochs = 500+1 learning_rate = 5e-4 beta_1 = 0.5 beta_2 = 0.9