-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgt_yolo2json.py
105 lines (82 loc) · 3.87 KB
/
gt_yolo2json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import sys
import re
import os.path as osp
import json
import cv2
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
COCO_IDS = [1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90]
def create_annotations(cat_list, img_list, ann_list):
return OrderedDict({'categories': cat_list,
'images': img_list,
'annotations': ann_list})
def create_images_entry(image_id, width=None, height=None):
if width is None or height is None:
return OrderedDict({'id':image_id })
else:
return OrderedDict({'id':image_id, 'width':width, 'height':height })
def create_categories(class_names, class_ids):
return [{'id':class_ids[i], 'name':cls} for i, cls in enumerate(class_names)]
def create_annotations_entry(image_id, bbox, category_id, ann_id, iscrowd=0, area=None, segmentation=None):
if area is None:
if segmentation is None:
#Calulate area with bbox
area = bbox[2] * bbox[3]
else:
raise NotImplementedError()
return OrderedDict({
"id": ann_id,
"image_id": image_id,
"category_id": category_id,
"iscrowd": iscrowd,
"area": area,
"bbox": bbox
})
def get_image_id_from_path(image_path):
image_path = osp.splitext(image_path)[0]
m = re.search(r'\d+$', image_path)
return int(m.group())
def bbox_cxcywh_to_xywh(box):
x, y = box[..., 0] - box[..., 2] / 2, box[..., 1] - box[..., 3] / 2
box[..., 0], box[..., 1] = x, y
return box
def bbox_relative_to_absolute(box, img_dim, x_idx=[0,2], y_idx=[1,3]):
box[..., x_idx] *= img_dim[0]
box[..., y_idx] *= img_dim[1]
return box
def get_img_ann_list(img_path_list, label_path_list, class_ids):
img_list, ann_list = [],[]
for img_path, label_path in tqdm(zip(img_path_list, label_path_list), file=sys.stdout, leave=True, total=len(img_path_list)):
image_id = get_image_id_from_path(img_path)
# Read Image
if osp.exists(img_path):
img = cv2.imread(img_path)
height, width = img.shape[0], img.shape[1]
img_list.append(create_images_entry(image_id, width, height))
# Read Labels
if osp.exists(label_path):
labels = np.loadtxt(label_path).reshape(-1,5)
labels[..., 1:5] = bbox_relative_to_absolute(bbox_cxcywh_to_xywh(labels[..., 1:5]), (width, height))
for label in labels:
category_id = class_ids[int(label[0])]
bbox = list(label[1:5])
ann_id = len(ann_list)
ann_list.append(create_annotations_entry(image_id, bbox, category_id, ann_id))
return img_list, ann_list
def create_annotations_dict(target_txt, class_names, class_ids=None):
if class_ids is None:
class_ids = [i for i in range(len(class_names))]
with open(target_txt, 'r') as f:
img_path_list = [lines.strip() for lines in f.readlines()]
label_path_list = [img_path.replace('jpg', 'txt').replace('images', 'labels') for img_path in img_path_list]
#img_path_list, label_path_list = [img_path_list[1]], [label_path_list[1]]
img_list, ann_list = get_img_ann_list(img_path_list, label_path_list, class_ids)
cat_list = create_categories(class_names, class_ids)
ann_dict = create_annotations(cat_list, img_list, ann_list)
return ann_dict
def generate_annotations_file(target_txt, class_names, out, class_ids=None):
ann_dict = create_annotations_dict(target_txt, class_names, class_ids=class_ids)
with open(out, 'w') as f:
json.dump(ann_dict, f, indent=4, separators=(',', ':'))