-
Notifications
You must be signed in to change notification settings - Fork 0
/
ArcBall.cpp
128 lines (108 loc) · 4.47 KB
/
ArcBall.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/** KempoApi: The Turloc Toolkit *****************************/
/** * * **/
/** ** ** Filename: ArcBall.cpp **/
/** ** Version: Common **/
/** ** **/
/** **/
/** Arcball class for mouse manipulation. **/
/** **/
/** **/
/** **/
/** **/
/** (C) 1999-2003 Tatewake.com **/
/** History: **/
/** 08/17/2003 - (TJG) - Creation **/
/** 09/23/2003 - (TJG) - Bug fix and optimization **/
/** 09/25/2003 - (TJG) - Version for NeHe Basecode users **/
/** **/
/*************************************************************/
#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
//#include <gl\glaux.h> // Header File For The GLaux Library
#include "math.h" // Needed for sqrtf
#include "ArcBall.h" // ArcBall header
//Arcball sphere constants:
//Diameter is 2.0f
//Radius is 1.0f
//Radius squared is 1.0f
void ArcBall_t::_mapToSphere(const Point2fT* NewPt, Vector3fT* NewVec) const
{
Point2fT TempPt;
GLfloat length;
//Copy paramter into temp point
TempPt = *NewPt;
//Adjust point coords and scale down to range of [-1 ... 1]
TempPt.s.X = (TempPt.s.X * this->AdjustWidth) - 1.0f;
TempPt.s.Y = 1.0f - (TempPt.s.Y * this->AdjustHeight);
//Compute the square of the length of the vector to the point from the center
length = (TempPt.s.X * TempPt.s.X) + (TempPt.s.Y * TempPt.s.Y);
//If the point is mapped outside of the sphere... (length > radius squared)
if (length > 1.0f)
{
GLfloat norm;
//Compute a normalizing factor (radius / sqrt(length))
norm = 1.0f / FuncSqrt(length);
//Return the "normalized" vector, a point on the sphere
NewVec->s.X = TempPt.s.X * norm;
NewVec->s.Y = TempPt.s.Y * norm;
NewVec->s.Z = 0.0f;
}
else //Else it's on the inside
{
//Return a vector to a point mapped inside the sphere sqrt(radius squared - length)
NewVec->s.X = TempPt.s.X;
NewVec->s.Y = TempPt.s.Y;
NewVec->s.Z = FuncSqrt(1.0f - length);
}
}
//Create/Destroy
ArcBall_t::ArcBall_t(GLfloat NewWidth, GLfloat NewHeight)
{
//Clear initial values
this->StVec.s.X =
this->StVec.s.Y =
this->StVec.s.Z =
this->EnVec.s.X =
this->EnVec.s.Y =
this->EnVec.s.Z = 0.0f;
//Set initial bounds
this->setBounds(NewWidth, NewHeight);
}
//Mouse down
void ArcBall_t::click(const Point2fT* NewPt)
{
//Map the point to the sphere
this->_mapToSphere(NewPt, &this->StVec);
}
//Mouse drag, calculate rotation
void ArcBall_t::drag(const Point2fT* NewPt, Quat4fT* NewRot)
{
//Map the point to the sphere
this->_mapToSphere(NewPt, &this->EnVec);
//Return the quaternion equivalent to the rotation
if (NewRot)
{
Vector3fT Perp;
//Compute the vector perpendicular to the begin and end vectors
Vector3fCross(&Perp, &this->StVec, &this->EnVec);
//Compute the length of the perpendicular vector
if (Vector3fLength(&Perp) > Epsilon) //if its non-zero
{
//We're ok, so return the perpendicular vector as the transform after all
NewRot->s.X = Perp.s.X;
NewRot->s.Y = Perp.s.Y;
NewRot->s.Z = Perp.s.Z;
//In the quaternion values, w is cosine (theta / 2), where theta is rotation angle
NewRot->s.W= Vector3fDot(&this->StVec, &this->EnVec);
}
else //if its zero
{
//The begin and end vectors coincide, so return an identity transform
NewRot->s.X =
NewRot->s.Y =
NewRot->s.Z =
NewRot->s.W = 0.0f;
}
}
}