-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_twostage.py
131 lines (112 loc) · 5.77 KB
/
test_twostage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
step 1: find the best config combination (outcome/los) of the same model
step 2: get the prediction results
step 3: calculate the metric
"""
import pandas as pd
import numpy as np
import lightning as L
import torch
from datasets.loader.datamodule import EhrDataModule
from datasets.loader.load_los_info import get_los_info
from metrics import get_all_metrics, check_metric_is_better
from pipelines import DlPipeline, MlPipeline
from configs.dl import dl_best_hparams
from configs.ml import ml_best_hparams
from configs.experiments import experiments_configs
models = ["RF", "DT", "GBDT", "XGBoost", "CatBoost", 'MLP', 'GRU', 'RNN', 'LSTM', 'TCN', 'Transformer', 'AdaCare', 'Agent', 'GRASP', 'RETAIN', 'StageNet', 'MCGRU']
all_configs = []
all_configs.extend(dl_best_hparams)
all_configs.extend(ml_best_hparams)
all_configs.extend(experiments_configs)
filterrd_configs = []
for c in all_configs:
if "time_aware" not in c and c["task"] in ["outcome", "los"]:
filterrd_configs.append(c)
print(len(filterrd_configs))
# same dataset, same model, pair outcome and los task configs
pair_configs = []
def find_pair(dataset, model):
for c in filterrd_configs:
if c["dataset"]==dataset and c["model"]==model and c["task"]=="outcome":
outcome = c
for c in filterrd_configs:
if c["dataset"]==dataset and c["model"]==model and c["task"]=="los":
los = c
return (outcome, los)
for dataset in ["tjh", "cdsl"]:
for model in models:
pair_configs.append(find_pair(dataset, model))
def run_ml_experiment(config):
los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}')
config.update({"los_info": los_config})
# data
dm = EhrDataModule(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}', batch_size=config["batch_size"])
# train/val/test
pipeline = MlPipeline(config)
trainer = L.Trainer(accelerator="cpu", max_epochs=1, logger=False, num_sanity_val_steps=0)
trainer.test(pipeline, dm)
return pipeline.test_outputs
def run_dl_experiment(config):
los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}')
config.update({"los_info": los_config})
# data
dm = EhrDataModule(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}', batch_size=config["batch_size"])
# checkpoint
checkpoint_path = f'logs/train/{config["dataset"]}/{config["task"]}/{config["model"]}-fold{config["fold"]}-seed{config["seed"]}/checkpoints/best.ckpt'
if "time_aware" in config and config["time_aware"] == True:
checkpoint_path = f'logs/train/{config["dataset"]}/{config["task"]}/{config["model"]}-fold{config["fold"]}-seed{config["seed"]}-ta/checkpoints/best.ckpt' # time-aware loss applied
# train/val/test
pipeline = DlPipeline(config)
trainer = L.Trainer(accelerator="cpu", max_epochs=1, logger=False, num_sanity_val_steps=0)
trainer.test(pipeline, dm, ckpt_path=checkpoint_path)
return pipeline.test_outputs
if __name__ == "__main__":
best_hparams = experiments_configs # [TO-SPECIFY]
performance_table = {'dataset':[], 'task': [], 'model': [], 'fold': [], 'seed': [], 'accuracy': [], 'auroc': [], 'auprc': [], 'es': [], 'mae': [], 'mse': [], 'rmse': [], 'r2': [], 'osmae': []}
for pair_config in pair_configs:
# for i in range(0, 1):
config, config_los = pair_config
run_func = run_ml_experiment if config["model"] in ["RF", "DT", "GBDT", "XGBoost", "CatBoost"] else run_dl_experiment
if config["dataset"]=="cdsl":
seeds = [0]
folds = [0,1,2,3,4,5,6,7,8,9]
else: # tjh dataset
seeds = [0]
folds = [0,1,2,3,4,5,6,7,8,9]
for fold in folds:
config["fold"] = fold
config_los["fold"] = fold
for seed in seeds:
config["seed"] = seed
config_los["seed"] = seed
outcome_model_outputs = run_func(config)
los_model_outputs = run_func(config_los)
pred_outcome = outcome_model_outputs["preds"]
pred_los = los_model_outputs["preds"]
if run_func==run_ml_experiment: y_pred = np.stack([pred_outcome, pred_los], axis=1)
else:
y_pred = torch.cat([pred_outcome.unsqueeze(1), pred_los.unsqueeze(1)], dim=1)
y_true = outcome_model_outputs["labels"]
los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{fold}')
perf = get_all_metrics(y_pred, y_true, "multitask", los_config)
if "time_aware" in config and config["time_aware"] == True:
model_name = config['model']+"-ta"
else:
model_name = config['model']
performance_table['dataset'].append(config['dataset'])
performance_table['task'].append("twostage")
performance_table['model'].append(model_name)
performance_table['fold'].append(config['fold'])
performance_table['seed'].append(config['seed'])
performance_table['accuracy'].append(perf['accuracy'])
performance_table['auroc'].append(perf['auroc'])
performance_table['auprc'].append(perf['auprc'])
performance_table['es'].append(perf['es'])
performance_table['mae'].append(perf['mae'])
performance_table['mse'].append(perf['mse'])
performance_table['rmse'].append(perf['rmse'])
performance_table['r2'].append(perf['r2'])
performance_table['osmae'].append(perf['osmae'])
print(model_name, config["fold"], config["dataset"], perf)
pd.DataFrame(performance_table).to_csv('perf_twostage_0528.csv', index=False) # [TO-SPECIFY]