-
Notifications
You must be signed in to change notification settings - Fork 146
/
utils.py
146 lines (113 loc) · 3.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import time
import shutil
import math
import torch
import numpy as np
from torch.optim import SGD, Adam
from tensorboardX import SummaryWriter
class Averager():
def __init__(self):
self.n = 0.0
self.v = 0.0
def add(self, v, n=1.0):
self.v = (self.v * self.n + v * n) / (self.n + n)
self.n += n
def item(self):
return self.v
class Timer():
def __init__(self):
self.v = time.time()
def s(self):
self.v = time.time()
def t(self):
return time.time() - self.v
def time_text(t):
if t >= 3600:
return '{:.1f}h'.format(t / 3600)
elif t >= 60:
return '{:.1f}m'.format(t / 60)
else:
return '{:.1f}s'.format(t)
_log_path = None
def set_log_path(path):
global _log_path
_log_path = path
def log(obj, filename='log.txt'):
print(obj)
if _log_path is not None:
with open(os.path.join(_log_path, filename), 'a') as f:
print(obj, file=f)
def ensure_path(path, remove=True):
basename = os.path.basename(path.rstrip('/'))
if os.path.exists(path):
if remove and (basename.startswith('_')
or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'):
shutil.rmtree(path)
os.makedirs(path)
else:
os.makedirs(path)
def set_save_path(save_path, remove=True):
ensure_path(save_path, remove=remove)
set_log_path(save_path)
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
return log, writer
def compute_num_params(model, text=False):
tot = int(sum([np.prod(p.shape) for p in model.parameters()]))
if text:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def make_optimizer(param_list, optimizer_spec, load_sd=False):
Optimizer = {
'sgd': SGD,
'adam': Adam
}[optimizer_spec['name']]
optimizer = Optimizer(param_list, **optimizer_spec['args'])
if load_sd:
optimizer.load_state_dict(optimizer_spec['sd'])
return optimizer
def make_coord(shape, ranges=None, flatten=True):
""" Make coordinates at grid centers.
"""
coord_seqs = []
for i, n in enumerate(shape):
if ranges is None:
v0, v1 = -1, 1
else:
v0, v1 = ranges[i]
r = (v1 - v0) / (2 * n)
seq = v0 + r + (2 * r) * torch.arange(n).float()
coord_seqs.append(seq)
ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1)
if flatten:
ret = ret.view(-1, ret.shape[-1])
return ret
def to_pixel_samples(img):
""" Convert the image to coord-RGB pairs.
img: Tensor, (3, H, W)
"""
coord = make_coord(img.shape[-2:])
rgb = img.view(3, -1).permute(1, 0)
return coord, rgb
def calc_psnr(sr, hr, dataset=None, scale=1, rgb_range=1):
diff = (sr - hr) / rgb_range
if dataset is not None:
if dataset == 'benchmark':
shave = scale
if diff.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
diff = diff.mul(convert).sum(dim=1)
elif dataset == 'div2k':
shave = scale + 6
else:
raise NotImplementedError
valid = diff[..., shave:-shave, shave:-shave]
else:
valid = diff
mse = valid.pow(2).mean()
return -10 * torch.log10(mse)