-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Palour
authored
Jul 8, 2019
1 parent
82c3cb4
commit e546176
Showing
1 changed file
with
101 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
""" | ||
""" | ||
|
||
import tensorflow as tf | ||
from tensorflow.examples.tutorials.mnist import input_data | ||
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #MNIST数据输入 | ||
|
||
def weight_variable(shape): | ||
initial = tf.truncated_normal(shape, stddev = 0.1) | ||
return tf.Variable(initial) | ||
|
||
def bias_variable(shape): | ||
initial = tf.constant(0.1, shape = shape) | ||
return tf.Variable(initial) | ||
|
||
def conv2d(x, W): | ||
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'VALID') | ||
|
||
def max_pool_2x2(x): | ||
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], | ||
strides = [1, 2, 2, 1], padding = 'VALID') | ||
|
||
|
||
|
||
|
||
x = tf.placeholder(dtype=tf.float32, shape=(None, 784)) | ||
imgs = tf.reshape(x, (-1, 28, 28, 1), "RESHAP") | ||
y = tf.placeholder(dtype=tf.float32, shape=(None, 10)) | ||
|
||
c_1_w_1 = weight_variable(shape=(5, 5, 1, 6)) | ||
c_1_b_1 = bias_variable([6]) | ||
|
||
c_1 = tf.nn.conv2d(input=imgs, filter=c_1_w_1, strides=(1, 1, 1, 1), | ||
padding="SAME") | ||
c_1_1 = tf.add(c_1, c_1_b_1) | ||
|
||
c_1_out = tf.nn.relu(c_1_1, name="C_1_RELU") | ||
c_1_pool = max_pool_2x2(c_1_out) | ||
|
||
|
||
c_2_w_2 = weight_variable(shape=(5, 5, 6, 16)) | ||
c_2_b_2 = bias_variable([16]) | ||
c_2 = tf.nn.conv2d(input=c_1_pool, filter=c_2_w_2, strides=(1,1,1,1), | ||
padding='VALID') | ||
c_2_2 = tf.add(c_2, c_2_b_2) | ||
c_2_out = tf.nn.relu(c_2_2) | ||
|
||
c_2_pool = max_pool_2x2(c_2_out) | ||
|
||
c_3_w_3 = weight_variable(shape=(5, 5, 16, 120)) | ||
c_3_b_3 = bias_variable(shape=[120]) | ||
|
||
c_3 = tf.nn.conv2d(input=c_2_pool, filter=c_3_w_3, strides=(1, 1, 1, 1), | ||
padding='VALID') | ||
c_3_3 = tf.add(c_3, c_3_b_3) | ||
c_3_out = tf.nn.relu(c_3_3) | ||
|
||
f_1_in = tf.reshape(c_3_out, shape=[-1, 120]) | ||
f_1_w_1 = weight_variable(shape=[120]) | ||
f_1_b_1 = bias_variable([120]) | ||
|
||
f_out = tf.add(tf.multiply(f_1_in, f_1_w_1), f_1_b_1) | ||
|
||
|
||
keep_prob = tf.placeholder("float") | ||
h_fc1_drop = tf.nn.dropout(f_out, keep_prob) | ||
|
||
W_fc2 = weight_variable([120, 10]) | ||
b_fc2 = bias_variable([10]) | ||
|
||
y_conv = tf.nn.softmax(tf.matmul(f_out, W_fc2) + b_fc2) | ||
|
||
|
||
|
||
y_ = tf.placeholder("float", [None, 10]) | ||
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵 | ||
|
||
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) | ||
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) | ||
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) | ||
|
||
|
||
sess = tf.Session() | ||
sess.run(tf.initialize_all_variables()) | ||
|
||
|
||
last = -1 | ||
while mnist.train.epochs_completed < 10: | ||
batch = mnist.train.next_batch(50) #batch大小设置为50 | ||
train_step.run(session = sess, feed_dict = {x:batch[0], y_:batch[1], | ||
keep_prob:0.5}) | ||
|
||
if mnist.train.epochs_completed != last: | ||
last = mnist.train.epochs_completed | ||
train_accuracy = accuracy.eval(session = sess, feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0}) | ||
test = accuracy.eval(session = sess, feed_dict = {x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}) | ||
tf.summary.scalar("acc",train_accuracy) | ||
print("Epoch {}, Train Acc {}% Dev Acc {}%".format(mnist.train.epochs_completed, round(train_accuracy * 100, 4), round(test * 100, 4))) | ||
|