-
-
Notifications
You must be signed in to change notification settings - Fork 289
/
Copy pathmain.py
123 lines (89 loc) · 3.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""Demo code showing how to estimate human head pose.
There are three major steps:
1. Detect and crop the human faces in the video frame.
2. Run facial landmark detection on the face image.
3. Estimate the pose by solving a PnP problem.
For more details, please refer to:
https://github.com/yinguobing/head-pose-estimation
"""
from argparse import ArgumentParser
import cv2
from face_detection import FaceDetector
from mark_detection import MarkDetector
from pose_estimation import PoseEstimator
from utils import refine
# Parse arguments from user input.
parser = ArgumentParser()
parser.add_argument("--video", type=str, default=None,
help="Video file to be processed.")
parser.add_argument("--cam", type=int, default=0,
help="The webcam index.")
args = parser.parse_args()
print(__doc__)
print("OpenCV version: {}".format(cv2.__version__))
def run():
# Before estimation started, there are some startup works to do.
# Initialize the video source from webcam or video file.
video_src = args.cam if args.video is None else args.video
cap = cv2.VideoCapture(video_src)
print(f"Video source: {video_src}")
# Get the frame size. This will be used by the following detectors.
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Setup a face detector to detect human faces.
face_detector = FaceDetector("assets/face_detector.onnx")
# Setup a mark detector to detect landmarks.
mark_detector = MarkDetector("assets/face_landmarks.onnx")
# Setup a pose estimator to solve pose.
pose_estimator = PoseEstimator(frame_width, frame_height)
# Measure the performance with a tick meter.
tm = cv2.TickMeter()
# Now, let the frames flow.
while True:
# Read a frame.
frame_got, frame = cap.read()
if frame_got is False:
break
# If the frame comes from webcam, flip it so it looks like a mirror.
if video_src == 0:
frame = cv2.flip(frame, 2)
# Step 1: Get faces from current frame.
faces, _ = face_detector.detect(frame, 0.7)
# Any valid face found?
if len(faces) > 0:
tm.start()
# Step 2: Detect landmarks. Crop and feed the face area into the
# mark detector. Note only the first face will be used for
# demonstration.
face = refine(faces, frame_width, frame_height, 0.15)[0]
x1, y1, x2, y2 = face[:4].astype(int)
patch = frame[y1:y2, x1:x2]
# Run the mark detection.
marks = mark_detector.detect([patch])[0].reshape([68, 2])
# Convert the locations from local face area to the global image.
marks *= (x2 - x1)
marks[:, 0] += x1
marks[:, 1] += y1
# Step 3: Try pose estimation with 68 points.
pose = pose_estimator.solve(marks)
tm.stop()
# All done. The best way to show the result would be drawing the
# pose on the frame in realtime.
# Do you want to see the pose annotation?
pose_estimator.visualize(frame, pose, color=(0, 255, 0))
# Do you want to see the axes?
# pose_estimator.draw_axes(frame, pose)
# Do you want to see the marks?
# mark_detector.visualize(frame, marks, color=(0, 255, 0))
# Do you want to see the face bounding boxes?
# face_detector.visualize(frame, faces)
# Draw the FPS on screen.
cv2.rectangle(frame, (0, 0), (90, 30), (0, 0, 0), cv2.FILLED)
cv2.putText(frame, f"FPS: {tm.getFPS():.0f}", (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
# Show preview.
cv2.imshow("Preview", frame)
if cv2.waitKey(1) == 27:
break
if __name__ == '__main__':
run()