-
Notifications
You must be signed in to change notification settings - Fork 108
/
model.py
293 lines (240 loc) · 11.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# coding: utf-8
# In[1]:
import numpy as np
import os, time , sys
import tensorflow as tf
from tensorflow.contrib.rnn import LSTMCell
from tensorflow.contrib.crf import crf_log_likelihood
from tensorflow.contrib.crf import viterbi_decode
# In[5]:
from data import pad_sequences, batch_yield
from utils import get_logger
from eval import conlleval
# In[14]:
class BiLSTM_CRF(object):
def __init__(self, batch_size, epoch_num, hidden_dim, embeddings,
dropout_keep, optimizer, lr, clip_grad,
tag2label, vocab, shuffle,
model_path, summary_path, log_path, result_path,
CRF=True, update_embedding=True):
self.batch_size = batch_size
self.epoch_num = epoch_num
self.hidden_dim = hidden_dim
self.embeddings = embeddings
self.dropout_keep_prob = dropout_keep
self.optimizer = optimizer
self.lr = lr
print('self.lr=', self.lr)
self.clip_grad = clip_grad
self.tag2label = tag2label
self.num_tags = len(tag2label)
self.vocab = vocab
self.shuffle = shuffle
self.model_path = model_path
self.summary_path = summary_path
self.logger = get_logger(log_path)
self.result_path = result_path
self.CRF = CRF
self.update_embedding = update_embedding
def build_graph(self):
self.add_placeholders_op()
self.lookup_layer_op()
self.biLSTM_layer_op()
self.softmax_pred_op()
self.loss_op()
self.trainstep_op()
self.init_op()
def add_placeholders_op(self):
self.word_ids = tf.placeholder(tf.int32, shape=[None, None], name="word_ids")
self.labels = tf.placeholder(tf.int32, shape=[None, None], name="label")
self.sequence_lengths = tf.placeholder(tf.int32, shape=[None], name="sequence_lengths")
self.dropout_pl = tf.placeholder(tf.float32, shape=[], name="dropout")
self.lr_pl = tf.placeholder(tf.float32, shape=[], name="lr")
def lookup_layer_op(self):
with tf.variable_scope("words"):
_word_embeddings = tf.Variable(
self.embeddings,
dtype = tf.float32,
trainable = self.update_embedding,
name = "_word_embeddings")
word_embeddings = tf.nn.embedding_lookup(
params = _word_embeddings,
ids = self.word_ids,
name = "word_embeddings")
self.word_embeddings = tf.nn.dropout(word_embeddings, self.dropout_pl)
def biLSTM_layer_op(self):
with tf.variable_scope("bi-lstm"):
cell_fw = LSTMCell(self.hidden_dim)
cell_bw = LSTMCell(self.hidden_dim)
(output_fw_seq , output_bw_seq) , _= tf.nn.bidirectional_dynamic_rnn(
cell_fw = cell_fw,
cell_bw = cell_bw,
inputs = self.word_embeddings,
sequence_length= self.sequence_lengths,
dtype = tf.float32
)
output = tf.concat([output_fw_seq, output_bw_seq], axis=-1)
output = tf.nn.dropout(output, self.dropout_pl)
with tf.variable_scope("proj"):
W = tf.get_variable(name='W',
shape=[2*self.hidden_dim, self.num_tags],
initializer = tf.contrib.layers.xavier_initializer(),
dtype = tf.float32
)
b = tf.get_variable(name="b",
shape=[self.num_tags],
initializer = tf.zeros_initializer(),
dtype = tf.float32
)
s = tf.shape(output)
output = tf.reshape(output,[-1, 2*self.hidden_dim])
pred = tf.matmul(output, W)+b
self.logits = tf.reshape(pred, [-1,s[1], self.num_tags])
def loss_op(self):
if self.CRF:
log_likelihood, self.transition_params = crf_log_likelihood(
inputs=self.logits,
tag_indices=self.labels,
sequence_lengths=self.sequence_lengths
)
self.loss = -tf.reduce_mean(log_likelihood)
else:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits = self.logits,
labels=self.labels
)
mask = tf.sequence_mask(self.sequence_lengths)
losses = tf.boolean_mask(losses, mask)
self.loss = tf.reduce_mean(losses)
tf.summary.scalar("loss", self.loss)
def softmax_pred_op(self):
if not self.CRF:
self.labels_softmax_ = tf.argmax(self.logits, axis=-1)
self.labels_softmax_ = tf.cast(self.labels_softmax_, tf.int32)
def trainstep_op(self):
with tf.variable_scope("train_step"):
self.global_step = tf.Variable(0, name="global_step",trainable=False)
if self.optimizer == 'Adam':
optim = tf.train.AdamOptimizer(learning_rate=self.lr_pl)
elif self.optimizer=='Adadelta':
optim = tf.train.AdadeltaOptimizer(learning_rate=self.lr_pl)
elif self.optimizer == 'Adagrad':
optim = tf.train.AdagradOptimizer(learning_rate=self.lr_pl)
elif self.optimizer=='RMSProp':
optim = tf.train.RMSPropOptimizer(learning_rate=self.lr_pl)
elif self.optimizer=='Momentum':
optim = tf.train.MomentumOptimizer(learning_rate=self.lr_pl, momentum=0.9)
elif self.optimizer=='SGD':
optim = tf.train.GradientDescentOptimizer(learning_rate=self.lr_pl)
else:
optim = tf.train.GradientDescentOptimizer(learning_rate=self.lr_pl)
grads_and_vars = optim.compute_gradients(self.loss)
grads_and_vars_clip = [[tf.clip_by_value(g, -self.clip_grad, self.clip_grad), v] for g, v in grads_and_vars]
self.train_op = optim.apply_gradients(grads_and_vars_clip, global_step=self.global_step)
def init_op(self):
self.init_op = tf.global_variables_initializer()
def add_summary(self, sess):
self.merged = tf.summary.merge_all()
self.file_writer = tf.summary.FileWriter(self.summary_path, sess.graph)
def train(self, train, dev):
saver = tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
sess.run(self.init_op)
self.add_summary(sess)
for epoch in range(self.epoch_num):
self.run_one_epoch(sess, train, dev, self.tag2label, epoch, saver)
def test(self, test):
saver = tf.train.Saver()
with tf.Session() as sess:
self.logger.info("============test==========")
saver.restor(sess, self.model_path)
label_list, seq_len_list = self.dev_one_epoch(sess, test)
self.evaluate(label_list, seq_len_list, test)
def demo_one(self, sess, sent):
lablel_list = []
for seqs, labels in batch_yield(sent, self.batch_size,self.vocab,self.tag2label, shuffle=False):
label_list_, _ = self.predict_one_batch(sess, seqs)
label_list.extendz(label_list_)
label2tag = {}
for tag, label in self.tag2label.items():
label2tag[label] = tag if label!=0 else label
tag = [label2tag[label] for label in label_list[0]]
return tag
def run_one_epoch(self, sess, train, dev, tag2label,epoch, saver):
num_batches = (len(train)+self.batch_size-1)//self.batch_size
self.logger.info("train lenght={} number_batches={}".format(len(train), num_batches))
#start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
batches = batch_yield(train, self.batch_size, self.vocab, self.tag2label,shuffle=self.shuffle)
start_time0 = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.logger.info("=========={} epoch begin train, time is {}".format(epoch+1, start_time0))
for step ,(seq, labels) in enumerate(batches):
self.logger.info("======seq length======{}".format(len(seq)))
sys.stdout.write(' processing: {} batch / {} batches.'.format(step + 1, num_batches) + '\r')
step_num = epoch*num_batches + step +1
feed_dict, _ = self.get_feed_dict(seq, labels, self.lr, self.dropout_keep_prob)
_, loss_train, summary, step_num_= sess.run([self.train_op, self.loss, self.merged, self.global_step],
feed_dict=feed_dict)
start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
if step+1 ==1 or (step+1) %2==0 or step+1 ==num_batches:
self.logger.info(
'{} epoch {}, step {}, loss: {:.4}, global_step: {}'.format(start_time, epoch + 1, step + 1,
loss_train, step_num))
self.file_writer.add_summary(summary, step_num)
if step+1 == num_batches:
self.logger.info("========save session========{}".format(self.model_path))
saver.save(sess, self.model_path, global_step = step_num)
self.logger.info("=============validation==========")
label_list_dev , seq_len_list_dev = self.dev_one_epoch(sess, dev)
self.evaluate(label_list_dev, seq_len_list_dev, dev, epoch)
def get_feed_dict(self, seqs, labels = None, lr = None, dropout = None):
word_ids, seq_len_list = pad_sequences(seqs, pad_mark=0)
feed_dict = {self.word_ids:word_ids,
self.sequence_lengths : seq_len_list}
if labels is not None:
labels_, _ = pad_sequences(labels, pad_mark=0)
feed_dict[self.labels] = labels_
if lr is not None:
feed_dict[self.lr_pl ] = lr
if dropout is not None:
feed_dict[self.dropout_pl] = dropout
return feed_dict, seq_len_list
def dev_one_epoch(self, sess, dev):
label_list , seq_len_list = [], []
for seqs, labels in batch_yield(dev, self.batch_size, self.vocab,self.tag2label, shuffle=False):
label_list_, seq_len_list_ = self.predict_one_batch(sess, seqs)
label_list.extend(label_list_)
seq_len_list.extend(seq_len_list_)
return label_list, seq_len_list
def predict_one_batch(self, sess, seqs):
feed_dict, seq_len_list = self.get_feed_dict(seqs, dropout=1.0)
if self.CRF:
logits, transition_params = sess.run(
[self.logits, self.transition_params],
feed_dict = feed_dict)
label_list = []
for logit, seq_len in zip(logits, seq_len_list):
viterbi_seq, _ = viterbi_decode(logit[:seq_len], transition_params)
label_list.append(viterbi_seq)
return label_list, seq_len_list
else:
label_list = sess.run(self.labels_softmax_, feed_dict=feed_dict)
return label_list, seq_len_list
def evaluate(self, label_list, seq_len_list, data, epoch=None):
label2tag = {}
for tag, label in self.tag2label.items():
label2tag[label] = tag if label!=0 else label
model_predict = []
for label_, (sent, tag) in zip(label_list, data):
tag_ = [label2tag[label__] for label__ in label_]
sent_res = []
if len(label_)!=len(sent):
print("len=",len(sent), len(label_),len(tag_))
for i in range(len(sent)):
sent_res.append([sent[i], tag[i], tag_[i]])
model_predict.append(sent_res)
epoch_num = str(epoch+1) if epoch!=None else 'test'
label_path = os.path.join(self.result_path, 'label_'+epoch_num)
metric_path = os.path.join(self.result_path, 'result_metric_' + epoch_num)
for item in conlleval(model_predict, label_path, metric_path):
self.logger.info(item)
# In[ ]: