Skip to content

YiyanXu/DiffRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diffusion Recommender Model

This is the pytorch implementation of our paper at SIGIR 2023:

Diffusion Recommender Model

Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, Tat-Seng Chua

Environment

  • Anaconda 3
  • python 3.8.10
  • pytorch 1.12.0
  • numpy 1.22.3

Usage

Data

The experimental data are in './datasets' folder, including Amazon-Book, Yelp and MovieLens-1M. Note that the item embedding files of Amazon-book for clean setting and noisy setting are not here due to filesize limits, which are available at here. Those item embeddings used in L-DiffRec are derived from a pre-trained LightGCN specific to each dataset.

Note that the results on ML-1M differ from those reported in CODIGEM, owing to different data processing procedures. CODIGEM did not sort and split the training/testing sets according to timestamps; however, temporal splitting aligns better with the real-world testing.

Training

To reproduce the results and perform fine-tuning of the hyperparameters, please refer to the model name specified in the inference.py file. Ensure that the hyperparameter 'noise_min' is set to a value lower than 'noise_max'.

DiffRec

cd ./DiffRec
python main.py --cuda --dataset=$1 --data_path=../datasets/$1/ --lr=$2 --weight_decay=$3 --batch_size=$4 --dims=$5 --emb_size=$6 --mean_type=$7 --steps=$8 --noise_scale=$9 --noise_min=${10} --noise_max=${11} --sampling_steps=${12} --reweight=${13} --log_name=${14} --round=${15} --gpu=${16}

or use run.sh

cd ./DiffRec
sh run.sh dataset lr weight_decay batch_size dims emb_size mean_type steps noise_scale noise_min noise_max sampling_steps reweight log_name round gpu_id

L-DiffRec

cd ./L-DiffRec
python main.py --cuda --dataset=$1 --data_path=../datasets/$1/ --emb_path=../datasets/ --lr1=$2 --lr2=$3 --wd1=$4 --wd2=$5 --batch_size=$6 --n_cate=$7 --in_dims=$8 --out_dims=$9 --lamda=${10} --mlp_dims=${11} --emb_size=${12} --mean_type=${13} --steps=${14} --noise_scale=${15} --noise_min=${16} --noise_max=${17} --sampling_steps=${18} --reweight=${19} --log_name=${20} --round=${21} --gpu=${22}

or use run.sh

cd ./L-DiffRec
sh run.sh dataset lr1 lr2 wd1 wd2 batch_size n_cate in_dims out_dims lamda mlp_dims emb_size mean_type steps noise_scale noise_min noise_max sampling_steps reweight log_name round gpu_id

T-DiffRec

cd ./T-DiffRec
python main.py --cuda --dataset=$1 --data_path=../datasets/$1/ --lr=$2 --weight_decay=$3 --batch_size=$4 --dims=$5 --emb_size=$6 --mean_type=$7 --steps=$8 --noise_scale=$9 --noise_min=${10} --noise_max=${11} --sampling_steps=${12} --reweight=${13} --w_min=${14} --w_max=${15} --log_name=${16} --round=${17} --gpu=${18}

or use run.sh

cd ./T-DiffRec
sh run.sh dataset lr weight_decay batch_size dims emb_size mean_type steps noise_scale noise_min noise_max sampling_steps reweight w_min w_max log_name round gpu_id

LT-DiffRec

cd ./L-DiffRec
python main.py --cuda --dataset=$1 --data_path=../datasets/$1/ --emb_path=../datasets/ --lr1=$2 --lr2=$3 --wd1=$4 --wd2=$5 --batch_size=$6 --n_cate=$7 --in_dims=$8 --out_dims=$9 --lamda=${10} --mlp_dims=${11} --emb_size=${12} --mean_type=${13} --steps=${14} --noise_scale=${15} --noise_min=${16} --noise_max=${17} --sampling_steps=${18} --reweight=${19} --w_min=${20} --w_max=${21} --log_name=${22} --round=${23} --gpu=${24}

or use run.sh

cd ./L-DiffRec
sh run.sh dataset lr1 lr2 wd1 wd2 batch_size n_cate in_dims out_dims lamda mlp_dims emb_size mean_type steps noise_scale noise_min noise_max sampling_steps reweight w_min w_max log_name round gpu_id

Inference

  1. Download the checkpoints released by us from here.
  2. Put the 'checkpoints' folder into the current folder.
  3. Run inference.py
python inference.py --dataset=$1 --gpu=$2

Examples

  1. Train DiffRec on Amazon-book under clean setting
cd ./DiffRec
sh run.sh amazon-book_clean 5e-5 0 400 [1000] 10 x0 5 0.0001 0.0005 0.005 0 1 log 1 0
  1. Inference L-DiffRec on Yelp under noisy setting
cd ./L-DiffRec
python inference.py --dataset=yelp_noisy --gpu=0

Citation

If you use our code, please kindly cite:

@inproceedings{wang2023diffrec,
title = {Diffusion Recommender Model},
author = {Wang, Wenjie and Xu, Yiyan and Feng, Fuli and Lin, Xinyu and He, Xiangnan and Chua, Tat-Seng},
booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {832–841},
publisher = {ACM},
year = {2023}
}

About

Diffusion Recommender Model

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •