-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (168 loc) · 8.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import numpy as np
import argparse
import os
import pickle
import json
from utils import *
parser = argparse.ArgumentParser(description="MSPAN logger")
parser.add_argument("-v", type=str, required=True, help="version")
parser.add_argument('-ans_num', default=5, type=int)
parser.add_argument('-num_frames', default=16, type=int)
parser.add_argument('-word_dim', default=768, type=int)
parser.add_argument('-module_dim', default=512, type=int)
parser.add_argument('-app_pool5_dim', default=2048, type=int)
parser.add_argument('-motion_dim', default=2048, type=int)
parser.add_argument('-gpu', default=0, type=int)
parser.add_argument('-epoch', default=35, type=int)
parser.add_argument('-num_workers', default=8, type=int)
parser.add_argument('-bs', default=128, type=int)
parser.add_argument('-lr', default=5e-5, type=float)
parser.add_argument('-wd', default=0, type=float)
parser.add_argument('-drop', default=0.3, type=float)
parser.add_argument("-a", type=float, help="alpha", default=0.1)
parser.add_argument("-a2", type=float, help="alpha", default=1)
parser.add_argument("-neg", type=int, help="#neg_sample", default=5)
parser.add_argument("-b", type=float, action="store", help="kl loss multiplier", default=0.0125)
parser.add_argument("-tau", type=float, help="temperature for nce loss", default=0.1)
parser.add_argument("-tau_gumbel", type=float, help="temperature for gumbel_softmax", default=0.9)
args = parser.parse_args()
set_gpu_devices(args.gpu)
set_seed(999)
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from DataLoader import VideoQADataset
from networks.network import VideoQANetwork
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR, MultiStepLR
import eval_mc
from loss import InfoNCE
def train(model, optimizer, train_loader, xe, nce, device):
model.train()
total_step = len(train_loader)
epoch_xe_loss = 0.0
epoch_nce_loss = 0.0
epoch_loss = 0.0
prediction_list = []
answer_list = []
for iter, inputs in enumerate(train_loader):
# videos, qas, qa_lengths, vid_idx, ans, qns_key = inputs
input_batch = list(map(lambda x: x.to(device), inputs[:-1]))
videos, qas, qas_lengths, vid_idx, ans = input_batch
# #mix-up
lam_1 = np.random.beta(args.a, args.a)
lam_2 = np.random.beta(args.a2, args.a2)
index = torch.randperm(videos.size(0))
targets_a, targets_b = ans, ans[index]
out, out_anc, out_pos, out_neg = model(videos, qas, qas_lengths, vid_idx, lam_1, lam_2, index, ans)
model.zero_grad()
# xe loss
# xe_loss = lam_1 * xe(out[:,:5], targets_a) + (1 - lam_1) * xe(out[:,5:], targets_b) # xe(out, ans)
targets_a = F.one_hot(targets_a, num_classes=5)
targets_b = F.one_hot(targets_b, num_classes=5)
target = torch.cat([lam_1*targets_a, (1-lam_1)*targets_b], -1)
xe_loss = xe(F.log_softmax(out, dim=1), target)
# cl loss
nce_loss = nce(out_anc, out_pos, out_neg)
loss = xe_loss + args.b * nce_loss
loss.backward()
optimizer.step()
epoch_xe_loss += xe_loss.item()
epoch_nce_loss += args.b*nce_loss.item()
epoch_loss += loss.item()
prediction = out[:,:5].max(-1)[1] # bs,
prediction_list.append(prediction)
answer_list.append(inputs[-2])
predict_answers = torch.cat(prediction_list, dim=0).long().cpu()
ref_answers = torch.cat(answer_list, dim=0).long()
acc_num = torch.sum(predict_answers==ref_answers).numpy()
return epoch_loss / total_step, epoch_xe_loss/ total_step, epoch_nce_loss/ total_step, acc_num*100.0 / len(ref_answers)
def eval(model, val_loader, device):
model.eval()
prediction_list = []
answer_list = []
with torch.no_grad():
for iter, inputs in enumerate(val_loader):
input_batch = list(map(lambda x: x.to(device), inputs[:3]))
out = model(*input_batch)
prediction=out.max(-1)[1] # bs,
prediction_list.append(prediction)
answer_list.append(inputs[-2])
predict_answers = torch.cat(prediction_list, dim=0).long().cpu()
ref_answers = torch.cat(answer_list, dim=0).long()
acc_num = torch.sum(predict_answers==ref_answers).numpy()
return acc_num*100.0 / len(ref_answers)
def predict(model,test_loader, device):
"""
predict the answer with the trained model
:param model_file:
:return:
"""
model.eval()
results = {}
with torch.no_grad():
for iter, inputs in enumerate(test_loader):
input_batch = list(map(lambda x: x.to(device), inputs[:3]))
answers, qns_keys = inputs[-2], inputs[-1]
out = model(*input_batch)
prediction=out.max(-1)[1] # bs,
prediction = prediction.data.cpu().numpy()
for qid, pred, ans in zip(qns_keys, prediction, answers.numpy()):
results[qid] = {'prediction': int(pred), 'answer': int(ans)}
return results
if __name__=="__main__":
logger, sign =logger(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set data path
feat_path = '/storage_fast/ycli/vqa/qa_feat/next-qa'
sample_list_path = '/storage_fast/ycli/vqa/qa_dataset/next-qa'
train_data = VideoQADataset(sample_list_path, feat_path, 'train')
train_loader = DataLoader(train_data, batch_size=args.bs, shuffle=True, num_workers=args.num_workers, pin_memory=True)
val_data = VideoQADataset(sample_list_path, feat_path, 'val')
val_loader = DataLoader(val_data, batch_size=args.bs, shuffle=False, num_workers=args.num_workers, pin_memory=True)
test_data = VideoQADataset(sample_list_path, feat_path, 'test')
test_loader = DataLoader(test_data, batch_size=args.bs, shuffle=False, num_workers=args.num_workers, pin_memory=True)
# model
model_kwargs = {
'app_pool5_dim': args.app_pool5_dim,
'motion_dim': args.motion_dim,
'num_frames': args.num_frames,
'word_dim': args.word_dim,
'module_dim': args.module_dim,
'num_answers': args.ans_num,
'dropout': args.drop,
'neg': args.neg,
'tau_gumbel': args.tau_gumbel
}
model = VideoQANetwork(**model_kwargs)
optimizer = optim.Adam(model.parameters(), lr=args.lr , weight_decay=args.wd)
scheduler = ReduceLROnPlateau(optimizer, 'max', factor=0.5, patience=5, verbose=True)
# scheduler = StepLR(optimizer, step_size=5, gamma=0.5)
# scheduler = MultiStepLR(optimizer, milestones=[10,15,20,25], gamma=0.5)
model.to(device)
xe = nn.KLDivLoss(reduction='batchmean').to(device) # nn.CrossEntropyLoss().to(device)
cl = InfoNCE(temperature=args.tau, negative_mode='paired')
# train & val
print('training...')
best_eval_score = 0.0
best_epoch=1
for epoch in range(1, args.epoch+1):
train_loss, train_xe_loss, train_nce_loss, train_acc = train(model, optimizer, train_loader, xe, cl, device)
eval_score = eval(model, val_loader, device)
logger.debug("==>Epoch:[{}/{}][lr: {}][Train Loss: {:.4f} XE: {:.4f} NCE: {:.4f} Train acc: {:.2f} Val acc: {:.2f}]".
format(epoch, args.epoch, optimizer.param_groups[0]['lr'], train_loss, train_xe_loss, train_nce_loss, train_acc, eval_score))
scheduler.step(eval_score)
if eval_score > best_eval_score:
best_eval_score = eval_score
best_epoch = epoch
best_model_path='./models/best_model-{}.ckpt'.format(sign)
torch.save(model.state_dict(), best_model_path)
logger.debug("Epoch {} Best Val acc{:.2f}".format(best_epoch, best_eval_score))
# predict with best model
model.load_state_dict(torch.load(best_model_path))
test_acc=eval(model, test_loader, device)
logger.debug("Test acc{:.2f} on {} epoch".format(test_acc, best_epoch))
results=predict(model, test_loader, device)
eval_mc.accuracy_metric(test_data.sample_list_file, results)
result_path= './prediction/{}-{}-{:.2f}.json'.format(sign, best_epoch, best_eval_score)
save_file(results, result_path)