forked from linxd5/VSE_Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
176 lines (140 loc) · 5.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
import torch
import os
import cPickle as pkl
from datasets import load_dataset
from vocab import build_dictionary
import homogeneous_data
from torch.autograd import Variable
import time
from model import ImgSenRanking, PairwiseRankingLoss
import numpy
from tools import encode_sentences, encode_images
from evaluation import i2t, t2i
def trainer(data='coco',
margin=0.2,
dim=1024,
dim_image=4096,
dim_word=300,
max_epochs=15,
encoder='lstm',
dispFreq=10,
grad_clip=2.0,
maxlen_w=150,
batch_size=128,
saveto='vse/coco',
validFreq=100,
early_stop=20,
lrate=0.0002,
reload_=False):
# Model options
model_options = {}
model_options['data'] = data
model_options['margin'] = margin
model_options['dim'] = dim
model_options['dim_image'] = dim_image
model_options['dim_word'] = dim_word
model_options['max_epochs'] = max_epochs
model_options['dispFreq'] = dispFreq
model_options['grad_clip'] = grad_clip
model_options['maxlen_w'] = maxlen_w
model_options['batch_size'] = batch_size
model_options['saveto'] = saveto
model_options['validFreq'] = validFreq
model_options['lrate'] = lrate
model_options['reload_'] = reload_
print model_options
# reload options
if reload_ and os.path.exists(saveto):
print 'reloading...' + saveto
with open('%s.pkl'%saveto, 'rb') as f:
model_options = pkl.load(f)
# Load training and development sets
print 'loading dataset'
train, dev = load_dataset(data)
# Create and save dictionary
print 'Create dictionary'
worddict = build_dictionary(train[0]+dev[0])[0]
n_words = len(worddict)
model_options['n_words'] = n_words
print 'Dictionary size: ' + str(n_words)
with open('%s.dictionary.pkl'%saveto, 'wb') as f:
pkl.dump(worddict, f)
# Inverse dictionary
word_idict = dict()
for kk, vv in worddict.iteritems():
word_idict[vv] = kk
word_idict[0] = '<eos>'
word_idict[1] = 'UNK'
model_options['worddict'] = worddict
model_options['word_idict'] = word_idict
# Each sentence in the minibatch have same length (for encoder)
train_iter = homogeneous_data.HomogeneousData([train[0], train[1]], batch_size=batch_size, maxlen=maxlen_w)
img_sen_model = ImgSenRanking(model_options)
img_sen_model = img_sen_model.cuda()
loss_fn = PairwiseRankingLoss(margin=margin)
loss_fn = loss_fn.cuda()
params = filter(lambda p: p.requires_grad, img_sen_model.parameters())
optimizer = torch.optim.Adam(params, lrate)
uidx = 0
curr = 0.0
n_samples = 0
# For Early-stopping
best_r1, best_r5, best_r10, best_medr = 0.0, 0.0, 0.0, 0
best_r1i, best_r5i, best_r10i, best_medri = 0.0, 0.0, 0.0, 0
best_step = 0
for eidx in xrange(max_epochs):
print 'Epoch ', eidx
for x, im in train_iter:
n_samples += len(x)
uidx += 1
x, im = homogeneous_data.prepare_data(x, im, worddict, maxlen=maxlen_w, n_words=n_words)
if x is None:
print 'Minibatch with zero sample under length ', maxlen_w
uidx -= 1
continue
x = Variable(torch.from_numpy(x).cuda())
im = Variable(torch.from_numpy(im).cuda())
# Update
x, im = img_sen_model(x, im)
cost = loss_fn(im, x)
optimizer.zero_grad()
cost.backward()
torch.nn.utils.clip_grad_norm(params, grad_clip)
optimizer.step()
if numpy.mod(uidx, dispFreq) == 0:
print 'Epoch ', eidx, '\tUpdate ', uidx, '\tCost ', cost.data.cpu().numpy()[0]
if numpy.mod(uidx, validFreq) == 0:
print 'Computing results...'
curr_model = {}
curr_model['options'] = model_options
curr_model['worddict'] = worddict
curr_model['word_idict'] = word_idict
curr_model['img_sen_model'] = img_sen_model
ls, lim = encode_sentences(curr_model, dev[0]), encode_images(curr_model, dev[1])
r_time = time.time()
(r1, r5, r10, medr) = i2t(lim, ls)
print "Image to text: %.1f, %.1f, %.1f, %.1f" % (r1, r5, r10, medr)
(r1i, r5i, r10i, medri) = t2i(lim, ls)
print "Text to image: %.1f, %.1f, %.1f, %.1f" % (r1i, r5i, r10i, medri)
print "Cal Recall@K using %ss" %(time.time()-r_time)
curr_step = uidx / validFreq
currscore = r1 + r5 + r10 + r1i + r5i + r10i
if currscore > curr:
curr = currscore
best_r1, best_r5, best_r10, best_medr = r1, r5, r10, medr
best_r1i, best_r5i, best_r10i, best_medri = r1i, r5i, r10i, medri
best_step = curr_step
# Save model
print 'Saving model...',
pkl.dump(model_options, open('%s_params_%s.pkl'%(saveto, encoder), 'wb'))
torch.save(img_sen_model.state_dict(), '%s_model_%s.pkl'%(saveto, encoder))
print 'Done'
if curr_step - best_step > early_stop:
print 'Early stopping ...'
print "Image to text: %.1f, %.1f, %.1f, %.1f" % (best_r1, best_r5, best_r10, best_medr)
print "Text to image: %.1f, %.1f, %.1f, %.1f" % (best_r1i, best_r5i, best_r10i, best_medri)
return 0
print 'Seen %d samples'%n_samples
if __name__ == '__main__':
pass