-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvit.py
154 lines (128 loc) · 5.39 KB
/
vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import tensorflow as tf
import tensorflow_addons as tfa
class ViTEmbeddings(tf.keras.layers.Layer):
def __init__(self, patch_size, hidden_size, dropout=0.0, **kwargs):
super().__init__(**kwargs)
self.patch_size = patch_size
self.hidden_size = hidden_size
self.patch_embeddings = tf.keras.layers.Conv1D(filters=hidden_size, kernel_size=patch_size, strides=patch_size)
self.dropout = tf.keras.layers.Dropout(rate=dropout)
def build(self, input_shape):
self.cls_token = self.add_weight(shape=(1, 1, self.hidden_size), trainable=True, name="cls_token")
num_patches = input_shape[1] // self.patch_size
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 1, self.hidden_size), trainable=True, name="position_embeddings"
)
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
inputs_shape = tf.shape(inputs) # N,H,W,C
embeddings = self.patch_embeddings(inputs, training=training)
# add the [CLS] token to the embedded patch tokens
cls_tokens = tf.repeat(self.cls_token, repeats=inputs_shape[0], axis=0)
embeddings = tf.concat((cls_tokens, embeddings), axis=1)
# add positional encoding to each token
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings
class MLP(tf.keras.layers.Layer):
def __init__(self, mlp_dim, out_dim=None, activation="gelu", dropout=0.0, **kwargs):
super().__init__(**kwargs)
self.mlp_dim = mlp_dim
self.out_dim = out_dim
self.activation = activation
self.dropout_rate = dropout
def build(self, input_shape):
self.dense1 = tf.keras.layers.Dense(self.mlp_dim)
self.activation1 = tf.keras.layers.Activation(self.activation)
self.dropout = tf.keras.layers.Dropout(self.dropout_rate)
self.dense2 = tf.keras.layers.Dense(input_shape[-1] if self.out_dim is None else self.out_dim)
def call(self, inputs: tf.Tensor, training: bool = False):
x = self.dense1(inputs)
x = self.activation1(x)
x = self.dropout(x, training=training)
x = self.dense2(x)
x = self.dropout(x, training=training)
return x
class Block(tf.keras.layers.Layer):
def __init__(
self,
num_heads,
attention_dim,
attention_bias,
mlp_dim,
attention_dropout=0.0,
sd_survival_probability=1.0,
activation="gelu",
dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.norm_before = tf.keras.layers.LayerNormalization()
self.attn = tf.keras.layers.MultiHeadAttention(
num_heads,
attention_dim // num_heads,
use_bias=attention_bias,
dropout=attention_dropout,
)
self.stochastic_depth = tfa.layers.StochasticDepth(sd_survival_probability)
self.norm_after = tf.keras.layers.LayerNormalization()
self.mlp = MLP(mlp_dim=mlp_dim, activation=activation, dropout=dropout)
def build(self, input_shape):
super().build(input_shape)
# TODO YONIGO: tf doc says to do this ¯\_(ツ)_/¯
self.attn._build_from_signature(input_shape, input_shape)
def call(self, inputs, training=False):
x = self.norm_before(inputs, training=training)
x = self.attn(x, x, training=training)
x = self.stochastic_depth([inputs, x], training=training)
x2 = self.norm_after(x, training=training)
x2 = self.mlp(x2, training=training)
return self.stochastic_depth([x, x2], training=training)
def get_attention_scores(self, inputs):
x = self.norm_before(inputs, training=False)
_, weights = self.attn(x, x, training=False, return_attention_scores=True)
return weights
class VisionTransformer(tf.keras.Model):
def __init__(
self,
patch_size,
hidden_size,
depth,
num_heads,
mlp_dim,
num_classes,
dropout=0.0,
sd_survival_probability=1.0,
attention_bias=False,
attention_dropout=0.0,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.embeddings = ViTEmbeddings(patch_size, hidden_size, dropout)
sd = tf.linspace(1.0, sd_survival_probability, depth)
self.blocks = [
Block(
num_heads,
attention_dim=hidden_size,
attention_bias=attention_bias,
attention_dropout=attention_dropout,
mlp_dim=mlp_dim,
sd_survival_probability=(sd[i].numpy().item()),
dropout=dropout,
)
for i in range(depth)
]
self.norm = tf.keras.layers.LayerNormalization()
self.head = tf.keras.layers.Dense(num_classes)
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
x = self.embeddings(inputs, training=training)
for block in self.blocks:
x = block(x, training=training)
x = self.norm(x)
x = x[:, 0] # take only cls_token
return self.head(x)
def get_last_selfattention(self, inputs: tf.Tensor):
x = self.embeddings(inputs, training=False)
for block in self.blocks[:-1]:
x = block(x, training=False)
return self.blocks[-1].get_attention_scores(x)