forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_strike_zone.js
64 lines (56 loc) · 2.05 KB
/
train_strike_zone.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
require('@tensorflow/tfjs-node');
const argparse = require('argparse');
const sz_model = require('./strike_zone');
async function run(epochCount, savePath) {
sz_model.model.summary();
await sz_model.model.fitDataset(sz_model.trainingData, {
epochs: epochCount,
callbacks: {
onEpochEnd: async (epoch, logs) => {
console.log(`Epoch: ${epoch} - loss: ${logs.loss.toFixed(3)}`);
}
}
});
// Eval against test data:
await sz_model.testValidationData.forEachAsync(data => {
const evalOutput =
sz_model.model.evaluate(data.xs, data.ys, sz_model.TEST_DATA_LENGTH);
console.log(
`\nEvaluation result:\n` +
` Loss = ${evalOutput[0].dataSync()[0].toFixed(3)}; ` +
`Accuracy = ${evalOutput[1].dataSync()[0].toFixed(3)}`);
});
if (savePath !== null) {
await sz_model.model.save(`file://${savePath}`);
console.log(`Saved model to path: ${savePath}`);
}
}
const parser = new argparse.ArgumentParser(
{description: 'TensorFlow.js Strike Zone Training Example', addHelp: true});
parser.addArgument('--epochs', {
type: 'int',
defaultValue: 20,
help: 'Number of epochs to train the model for.'
})
parser.addArgument('--model_save_path', {
type: 'string',
help: 'Path to which the model will be saved after training.'
});
const args = parser.parseArgs();
run(args.epochs, args.model_save_path);