We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Problem name: Polynomial Composite Set Power Series (Transposed)
が与えられたとき, $k = 0, 1, \ldots, M-1$ に対して $\sum_i c_i (s^k)_i$ を計算する ($(s^k)_i$ は $s$ の $k$ 乗の $i$ 項目) mod 998244353
$M$ $N$ $c_0$ $c_1$ $\cdots$ $c_{2^N-1}$ $s_0$ $s_1$ $\cdots$ $s_{2^N-1}$
#944 の転置です
意見募集
The text was updated successfully, but these errors were encountered:
全体集合における係数
transpose なら $\sum c_i(s^k)_i$ の方がよいと思います。
変数名 in: c, b
これがまあ妥当かなと思います(双対基底に関する成分なのでちょっと嫌だという気持ちは分かるが、良い代案は特に持っていないです)
Sorry, something went wrong.
作業者募集で。
問題名について https://arxiv.org/pdf/2404.05177.pdf ここでは、Power Projection という呼称が使われている
No branches or pull requests
Problem name: Polynomial Composite Set Power Series (Transposed)
Problem
が与えられたとき,$k = 0, 1, \ldots, M-1$ に対して $\sum_i c_i (s^k)_i$ を計算する$(s^k)_i$ は $s$ の $k$ 乗の $i$ 項目)
(
mod 998244353
Constraint
Reference
Input
Note
#944 の転置です
意見募集
The text was updated successfully, but these errors were encountered: