forked from YoussefFathi/MINE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mv.py
210 lines (178 loc) · 9.12 KB
/
train_mv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
import argparse
import yaml
import json
import shutil
import numpy as np
from datetime import datetime
import torch
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from synthesis_task_multiview import SynthesisTask
from utils import run_shell_cmd
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--config_path", default="./params.yaml", type=str)
parser.add_argument("--workspace", type=str, required=True)
parser.add_argument("--version", type=str, required=True)
parser.add_argument("--extra_config", type=str, default="{}", required=False)
parser.add_argument("--local_rank", default=0, type=int,
help="node rank for distributed training")
args = parser.parse_args()
local_rank = int(args.local_rank)
# Load config yaml file and pre-process params
default_config_path = os.path.join(os.path.dirname(args.config_path), "params_default.yaml")
with open(default_config_path, "r") as f:
config = yaml.safe_load(f)
extra_config = json.loads(args.extra_config)
with open(args.config_path, "r") as f:
dataset_specific_config = yaml.safe_load(f)
# print(dataset_specific_config)
# print(config)
for k in dataset_specific_config.keys():
assert k in config, k
config.update(dataset_specific_config)
for k in extra_config.keys():
assert k in config, k
config.update(extra_config)
# Dump tmp config file
tmp_config_path = os.path.join(os.path.dirname(args.config_path), "params_tmp.yaml")
if local_rank == 0:
with open(tmp_config_path, "w") as f:
print("Dumping extra config file...")
yaml.dump(config, f)
# pre-process params
config["training.gpus"] = [int(s) for s in str(config["training.gpus"]).split(",")]
config["lr.decay_steps"] = [int(s) for s in str(config["lr.decay_steps"]).split(",")]
config["current_epoch"] = 0
# Config gpu
gpus = config["training.gpus"][local_rank]
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpus)
# dist env
dist.init_process_group(backend="nccl")
world_size = dist.get_world_size()
global_rank = dist.get_rank()
config["global_rank"] = global_rank
def get_dataset(config, logger):
# Init data loader
assert config["data.name"] in ["llff"]
if config["data.name"] == "llff":
from input_pipelines.llff.nerf_dataset_mv import NeRFDataset
train_dataset = NeRFDataset(config,
logger,
root=config["data.training_set_path"],
is_validation=False,
img_size=(config["data.img_w"], config["data.img_h"]),
supervision_count=config["data.num_tgt_views"],
visible_points_count=config["data.visible_point_count"],
img_pre_downsample_ratio=config["data.img_pre_downsample_ratio"])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_data_loader = DataLoader(train_dataset, batch_size=config["data.per_gpu_batch_size"],
drop_last=True, num_workers=0,
sampler=train_sampler,
collate_fn=train_dataset.collate_fn)
val_dataset = NeRFDataset(config,
logger,
root=config["data.training_set_path"],
is_validation=True,
img_size=(config["data.img_w"], config["data.img_h"]),
supervision_count=config["data.num_tgt_views"],
visible_points_count=config["data.visible_point_count"],
img_pre_downsample_ratio=config["data.img_pre_downsample_ratio"])
val_data_loader = DataLoader(val_dataset, batch_size=config["data.per_gpu_batch_size"],
shuffle=False, drop_last=False, num_workers=0,
collate_fn=val_dataset.collate_fn)
return train_data_loader, val_data_loader
# elif config["data.name"] == "kitti_raw":
# from input_pipelines.kitti_raw.nerf_dataset import NeRFDataset
# train_dataset = NeRFDataset(config,
# logger,
# root=config["data.training_set_path"],
# is_validation=False,
# img_size=(config["data.img_w"], config["data.img_h"]))
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
# # print(train_dataset)
# train_data_loader = DataLoader(train_dataset, batch_size=config["data.per_gpu_batch_size"],
# drop_last=True, num_workers=0,
# sampler=train_sampler)
# # collate_fn=train_dataset.collate_fn)
# val_dataset = NeRFDataset(config,
# logger,
# root=config["data.training_set_path"],
# is_validation=True,
# img_size=(config["data.img_w"], config["data.img_h"]))
# val_data_loader = DataLoader(val_dataset, batch_size=config["data.per_gpu_batch_size"],
# shuffle=False, drop_last=False, num_workers=0)
# # collate_fn=val_dataset.collate_fn)
# return train_data_loader, val_data_loader
# elif config["data.name"] == "shapenet":
# from input_pipelines.shapenet.nerf_dataset import NeRFDataset
# train_dataset = NeRFDataset(config,
# logger,
# root=config["data.training_set_path"],
# is_validation=False,
# img_size=(config["data.img_w"], config["data.img_h"]))
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
# # print(train_dataset)
# train_data_loader = DataLoader(train_dataset, batch_size=config["data.per_gpu_batch_size"],
# drop_last=True, num_workers=0,
# sampler=train_sampler)
# # collate_fn=train_dataset.collate_fn)
# val_dataset = NeRFDataset(config,
# logger,
# root=config["data.training_set_path"],
# is_validation=True,
# img_size=(config["data.img_w"], config["data.img_h"]))
# val_data_loader = DataLoader(val_dataset, batch_size=config["data.per_gpu_batch_size"],
# shuffle=False, drop_last=False, num_workers=0)
# # collate_fn=val_dataset.collate_fn)
# return train_data_loader, val_data_loader
else:
raise NotImplementedError
def train():
config["local_rank"] = local_rank
config["world_size"] = world_size
# Enable cudnn benchmark for speed optimization
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
# Config logging and tb writer
logger = None
if global_rank == 0:
import logging
# logging to file and stdout
config["log_file"] = "./training.log" \
if args.workspace.startswith("hdfs") \
else os.path.join(args.workspace, args.version, "training.log")
logger = logging.getLogger("mine")
file_handler = logging.FileHandler(config["log_file"])
stream_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("[%(asctime)s %(filename)s] %(message)s")
file_handler.setFormatter(formatter)
stream_handler.setFormatter(formatter)
logger.handlers = [file_handler, stream_handler]
logger.setLevel(logging.INFO)
logger.propagate = False
logger.info("Training config: {}".format(config))
# tensorboard summary_writer
config["tb_writer"] = SummaryWriter(log_dir=config["local_workspace"])
config["logger"] = logger
# Init data loader
train_data_loader, val_data_loader = get_dataset(config, logger)
synthesis_task = SynthesisTask(config=config, logger=logger)
synthesis_task.train(train_data_loader, val_data_loader)
def main():
if config["global_rank"] == 0:
# Create sub working dir
current_time = datetime.now().strftime("%m-%d-%Y;%H:%M:%S")
workspace = os.path.join(args.workspace, args.version)
workspace = os.path.join(workspace, config["data.name"]+"_"+str(current_time))
if not os.path.exists(workspace):
os.makedirs(workspace)
config["local_workspace"] = workspace
shutil.copy(tmp_config_path, os.path.join(workspace, "params.yaml"))
dist.barrier()
# Start training
train()
if __name__ == "__main__":
main()