-
Notifications
You must be signed in to change notification settings - Fork 146
/
tf_utils.py
87 lines (74 loc) · 3.04 KB
/
tf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Utility functions for tensorflow"""
import tensorflow as tf
import numpy as np
def max_pool(x, k_sz=[2, 2]):
"""max pooling layer wrapper
Args
x: 4d tensor [batch, height, width, channels]
k_sz: The size of the window for each dimension of the input tensor
Returns
a max pooling layer
"""
return tf.nn.max_pool(
x, ksize=[
1, k_sz[0], k_sz[1], 1], strides=[
1, k_sz[0], k_sz[1], 1], padding='SAME')
def conv2d(x, n_kernel, k_sz, stride=1):
"""convolutional layer with relu activation wrapper
Args:
x: 4d tensor [batch, height, width, channels]
n_kernel: number of kernels (output size)
k_sz: 2d array, kernel size. e.g. [8,8]
stride: stride
Returns
a conv2d layer
"""
W = tf.Variable(tf.random_normal([k_sz[0], k_sz[1], int(x.get_shape()[3]), n_kernel]))
b = tf.Variable(tf.random_normal([n_kernel]))
# - strides[0] and strides[1] must be 1
# - padding can be 'VALID'(without padding) or 'SAME'(zero padding)
# - http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t
conv = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME')
conv = tf.nn.bias_add(conv, b) # add bias term
# rectified linear unit: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
return tf.nn.relu(conv)
def fc(x, n_output, scope="fc", activation_fn=None, initializer=None):
"""fully connected layer with relu activation wrapper
Args
x: 2d tensor [batch, n_input]
n_output output size
"""
with tf.variable_scope(scope):
if initializer is None:
# default initialization
W = tf.Variable(tf.random_normal([int(x.get_shape()[1]), n_output]))
b = tf.Variable(tf.random_normal([n_output]))
else:
W = tf.get_variable("W", shape=[int(x.get_shape()[1]), n_output], initializer=initializer)
b = tf.get_variable("b", shape=[n_output],
initializer=tf.constant_initializer(.0, dtype=tf.float32))
fc1 = tf.add(tf.matmul(x, W), b)
if not activation_fn is None:
fc1 = activation_fn(fc1)
return fc1
def flatten(x):
"""flatten a 4d tensor into 2d
Args
x: 4d tensor [batch, height, width, channels]
Returns a flattened 2d tensor
"""
return tf.reshape(x, [-1, int(x.get_shape()[1] * x.get_shape()[2] * x.get_shape()[3])])
def update_target_graph(from_scope, to_scope):
from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope)
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
op_holder = []
for from_var, to_var in zip(from_vars, to_vars):
op_holder.append(to_var.assign(from_var))
return op_holder
# Used to initialize weights for policy and value output layers
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer