Skip to content

Latest commit

 

History

History
367 lines (329 loc) · 11 KB

MinikubeDemo.md

File metadata and controls

367 lines (329 loc) · 11 KB

Simple Minikube Demo

You can deploy katib components and try a simple mnist demo on your laptop!

Requirement

  • VirtualBox
  • Minikube
  • kubectl

deploy

Start Katib on Minikube with deploy.sh. A Minikube cluster and Katib components will be deployed!

You can check them with kubectl -n katib get pods. Don't worry if the vizier-core get an error. It will be recovered after DB will be prepared. Wait until all components will be Running status.

Then, start port-forward for katib services 6789 -> manager and 3000 -> UI.

kubectl v1.10~

$ kubectl -n katib port-forward svc/vizier-core 6789:6789 &
$ kubectl -n katib port-forward svc/katib-ui 3000:3000 &

kubectl ~v1.9

& kubectl -n katib port-forward $(kubectl -n katib get pod -o=name | grep vizier-core | sed -e "s@pods\/@@") 6789:6789 &
& kubectl -n katib port-forward $(kubectl -n katib get pod -o=name | grep katib-ui | sed -e "s@pods\/@@") 3000:3000 &

Create Study

Random Suggestion Demo

$ kubectl apply -f random-example.yaml

Only this command, a study will start, generate hyper-parameters and save the results. The configurations for the study(hyper-parameter feasible space, optimization parameter, optimization goal, suggestion algorithm, and so on) are defined in random-example.yaml, In this demo, hyper-parameters are embbeded as args. You can embbed in another way(e.g. eviroment values) by using template. It defined in WorkerSpec.GoTemplate.RawTemplate. It is written in go template format.

In this demo, 3 hyper parameters

  • Learning Rate (--lr) - type: double
  • Number of NN Layer (--num-layers) - type: int
  • optimizer (--optimizer) - type: categorical are randomly generated.
$ kubectl -n katib get studyjob
NAME             AGE
random-example   2m

Check the study status.

$ kubectl -n katib describe studyjobs random-example
Name:         random-example
Namespace:    katib
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"kubeflow.org/v1alpha1","kind":"StudyJob","metadata":{"annotations":{},"labels":{"controller-tools.k8s.io":"1.0"},"name":"random-example"...
API Version:  kubeflow.org/v1alpha1
Kind:         StudyJob
Metadata:
  Cluster Name:
  Creation Timestamp:  2018-08-15T01:29:13Z
  Generation:          0
  Resource Version:    173289
  Self Link:           /apis/kubeflow.org/v1alpha1/namespaces/katib/studyjobs/random-example
  UID:                 9e136400-a02a-11e8-b88c-42010af0008b
Spec:
  Study Spec:
    Metricsnames:
      accuracy
    Name:                random-example
    Objectivevaluename:  Validation-accuracy
    Optimizationgoal:    0.98
    Optimizationtype:    maximize
    Owner:               crd
    Parameterconfigs:
      Feasible:
        Max:          0.03
        Min:          0.01
      Name:           --lr
      Parametertype:  double
      Feasible:
        Max:          3
        Min:          2
      Name:           --num-layers
      Parametertype:  int
      Feasible:
        List:
          sgd
          adam
          ftrl
      Name:           --optimizer
      Parametertype:  categorical
  Suggestion Spec:
    Request Number:         3
    Suggestion Algorithm:   random
    Suggestion Parameters:  <nil>
  Worker Spec:
    Command:
      python
      /mxnet/example/image-classification/train_mnist.py
      --batch-size=64
    Image:        katib/mxnet-mnist-example
    Worker Type:  Default
Status:
  Best Objctive Value:          <nil>
  Conditon:                     Running
  Early Stopping Parameter Id:
  Studyid:                      qb397cc06d1f8302
  Suggestion Parameter Id:
  Trials:
    Trialid:  p18ee16163b85678
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        td08f74b9939350d
    Trialid:           pb1be3dbe53a5cb0
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        p2b23e25cce4092c
    Trialid:           m64209fe0867e91a
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        q6258c1ac98a00a5
Events:                <none>

When the Spec.Status.State become Completed, the study is completed. You can look the result on http://127.0.0.1:3000/katib.

Use ConfigMap for Worker Template

In Random example, the template for workers is defined in StudyJob manifest. A ConfigMap is also used for worker template. Let's use this template.

kubectl apply -f workerConfigMap.yaml

This template will share among blow three demos(Grid, Hyperband, and GPU).

Grid Demo

Almost same as random suggestion.

In this demo, Katib will make 4 grids for learning rate (--lr) Min 0.03 and Max 0.07.

kubectl apply -f grid-example.yaml

Hyperband Demo

In this demo, the eta is 3 and the R is 9.

kubectl apply -f random-example.yaml

UI

You can check your study results with Web UI. Acsess to http://127.0.0.1:3000/katib The Results will be saved automatically.

Using GPU demo

You can set any configuration for your worker pods. Here, try to set config for GPU. The manifest of the worker pods are generated from a template. The templates are defined in ConfigMap. There are two templates, defaultWorkerTemplate.yaml and gpuWorkerTemplate.yaml. You can add your template for worker. Then you should specify the template in your studyjob spec. This is example for using gpuWorkerTemplate.yaml. Set "/worker-template/gpuWorkerTemplate.yaml at workerTemplatePath field and specify gpu number at workerParameters/Gpu You can apply it same as other examples.

$ kubectl apply -f gpu-example.yaml
$ kubectl -n katib get studyjob

NAME             AGE
gpu-example      1m
random-example   17m

$ kubectl -n katib describe studyjob gpu-example

Name:         gpu-example
Namespace:    katib
Labels:       controller-tools.k8s.io=1.0
Annotations:  kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"kubeflow.org/v1alpha1","kind":"StudyJob","metadata":{"annotations":{},"labels":{"controller-tools.k8s.io":"1.0"},"name":"gpu-example","n...
API Version:  kubeflow.org/v1alpha1
Kind:         StudyJob
Metadata:
  Cluster Name:
  Creation Timestamp:  2018-08-15T01:48:12Z
  Generation:          0
  Resource Version:    175002
  Self Link:           /apis/kubeflow.org/v1alpha1/namespaces/katib/studyjobs/gpu-example
  UID:                 44afac4c-a02d-11e8-b88c-42010af0008b
Spec:
  Study Spec:
    Metricsnames:
      accuracy
    Name:                gpu-example

	...

  Worker Spec:
    Command:
      python
      /mxnet/example/image-classification/train_mnist.py
      --batch-size=64
    Image:  katib/mxnet-mnist-example
    Worker Parameters:
      Gpu:                 1
    Worker Template Path:  /worker-template/gpuWorkerTemplate.yaml
    Worker Type:           Default
Status:
  Best Objctive Value:          <nil>
  Conditon:                     Running
  Early Stopping Parameter Id:
  Studyid:                      k549e927046f2136
  Suggestion Parameter Id:
  Trials:
    Trialid:  t721857cd426b68b
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        g07cba174ada521e
    Trialid:           f27c0ac1c6664533
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        h8d5062f2f1b8633
    Trialid:           v129109d1331a98e
    Workeridlist:
      Objctive Value:  <nil>
      Conditon:        Running
      Workerid:        x8f172a64645690e

Check the GPU configuration works correctly.

$ kubectl -n katib describe pod g07cba174ada521e-88wpn
Name:           g07cba174ada521e-88wpn
Namespace:      katib
Node:           <none>
Labels:         controller-uid=44bfb99f-a02d-11e8-b88c-42010af0008b
                job-name=g07cba174ada521e
Annotations:    <none>
Status:         Pending
IP:
Controlled By:  Job/g07cba174ada521e
Containers:
  g07cba174ada521e:
    Image:  katib/mxnet-mnist-example
    Port:   <none>
    Command:
      python
      /mxnet/example/image-classification/train_mnist.py
      --batch-size=64
      --lr=0.0175
      --num-layers=2
      --optimizer=adam
    Limits:
      nvidia.com/gpu:  1
    Requests:
      nvidia.com/gpu:  1
    Environment:       <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-knffp (ro)
Conditions:
  Type           Status
  PodScheduled   False
Volumes:
  default-token-knffp:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  default-token-knffp
    Optional:    false
QoS Class:       BestEffort
Node-Selectors:  <none>
Tolerations:     node.kubernetes.io/not-ready:NoExecute for 300s
                 node.kubernetes.io/unreachable:NoExecute for 300s
                 nvidia.com/gpu:NoSchedule
Events:
  Type     Reason            Age               From               Message
  ----     ------            ----              ----               -------
  Warning  FailedScheduling  6s (x21 over 4m)  default-scheduler  0/3 nodes are available: 3 Insufficient nvidia.com/gpu.

Metrics Collection

When you use default worker type (It specify Spec.workerSpec.workerType), the metrics of worker will be collected from default metrics collector. It is deploy as a cronjob. It will collect and report metrics periodically. It collect metrics through k8s pod log API. You should print logs {metrics name}={value} style. In the above demo, the objective value name is Validation-accuracy and the metrics are accuracy, your training code should print like this.

epoch 1:
batch1 accuracy=0.3
batch2 accuracy=0.5

Validation-accuracy=0.4

epoch 2:
batch1 accuracy=0.7
batch2 accuracy=0.8

Validation-accuracy=0.75

The metrics collector will collect all logs of metrics. The manifest of metrics collector is also generated from template and defined here. You can add your template and specify spec.metricsCollectorSpec.metricsCollectorTemplatePath in a studyjob manifest.

ModelManagement

You can export model data to yaml file with CLI.

katib-cli -s {{server-cli}} pull study {{study ID or name}}  -o {{filename}}

And you can push your existing models to Katib with CLI. mnist-models.yaml is traind 22 models using random suggestion with this Parameter Config.

configs:
    - name: --lr
      parametertype: 1
      feasible:
        max: "0.07"
        min: "0.03"
        list: []
    - name: --lr-factor
      parametertype: 1
      feasible:
        max: "0.05"
        min: "0.005"
        list: []
    - name: --lr-step
      parametertype: 2
      feasible:
        max: "20"
        min: "5"
        list: []
    - name: --optimizer
      parametertype: 4
      feasible:
        max: ""
        min: ""
        list:
        - sgd
        - adam
        - ftrl

You can easy to explore the model on KatibUI.

katib-cli push md -f mnist-models.yaml

Clean

Clean up with ./destroy.sh script. It will stop port-forward process and delete minikube cluster.