You can deploy katib components and try a simple mnist demo on your laptop!
- VirtualBox
- Minikube
- kubectl
Start Katib on Minikube with deploy.sh. A Minikube cluster and Katib components will be deployed!
You can check them with kubectl -n katib get pods
.
Don't worry if the vizier-core
get an error.
It will be recovered after DB will be prepared.
Wait until all components will be Running status.
Then, start port-forward for katib services 6789 -> manager
and 3000 -> UI
.
kubectl v1.10~
$ kubectl -n katib port-forward svc/vizier-core 6789:6789 &
$ kubectl -n katib port-forward svc/katib-ui 3000:3000 &
kubectl ~v1.9
& kubectl -n katib port-forward $(kubectl -n katib get pod -o=name | grep vizier-core | sed -e "s@pods\/@@") 6789:6789 &
& kubectl -n katib port-forward $(kubectl -n katib get pod -o=name | grep katib-ui | sed -e "s@pods\/@@") 3000:3000 &
$ kubectl apply -f random-example.yaml
Only this command, a study will start, generate hyper-parameters and save the results.
The configurations for the study(hyper-parameter feasible space, optimization parameter, optimization goal, suggestion algorithm, and so on) are defined in random-example.yaml
,
In this demo, hyper-parameters are embbeded as args.
You can embbed in another way(e.g. eviroment values) by using template.
It defined in WorkerSpec.GoTemplate.RawTemplate
.
It is written in go template format.
In this demo, 3 hyper parameters
- Learning Rate (--lr) - type: double
- Number of NN Layer (--num-layers) - type: int
- optimizer (--optimizer) - type: categorical are randomly generated.
$ kubectl -n katib get studyjob
NAME AGE
random-example 2m
Check the study status.
$ kubectl -n katib describe studyjobs random-example
Name: random-example
Namespace: katib
Labels: controller-tools.k8s.io=1.0
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"kubeflow.org/v1alpha1","kind":"StudyJob","metadata":{"annotations":{},"labels":{"controller-tools.k8s.io":"1.0"},"name":"random-example"...
API Version: kubeflow.org/v1alpha1
Kind: StudyJob
Metadata:
Cluster Name:
Creation Timestamp: 2018-08-15T01:29:13Z
Generation: 0
Resource Version: 173289
Self Link: /apis/kubeflow.org/v1alpha1/namespaces/katib/studyjobs/random-example
UID: 9e136400-a02a-11e8-b88c-42010af0008b
Spec:
Study Spec:
Metricsnames:
accuracy
Name: random-example
Objectivevaluename: Validation-accuracy
Optimizationgoal: 0.98
Optimizationtype: maximize
Owner: crd
Parameterconfigs:
Feasible:
Max: 0.03
Min: 0.01
Name: --lr
Parametertype: double
Feasible:
Max: 3
Min: 2
Name: --num-layers
Parametertype: int
Feasible:
List:
sgd
adam
ftrl
Name: --optimizer
Parametertype: categorical
Suggestion Spec:
Request Number: 3
Suggestion Algorithm: random
Suggestion Parameters: <nil>
Worker Spec:
Command:
python
/mxnet/example/image-classification/train_mnist.py
--batch-size=64
Image: katib/mxnet-mnist-example
Worker Type: Default
Status:
Best Objctive Value: <nil>
Conditon: Running
Early Stopping Parameter Id:
Studyid: qb397cc06d1f8302
Suggestion Parameter Id:
Trials:
Trialid: p18ee16163b85678
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: td08f74b9939350d
Trialid: pb1be3dbe53a5cb0
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: p2b23e25cce4092c
Trialid: m64209fe0867e91a
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: q6258c1ac98a00a5
Events: <none>
When the Spec.Status.State become Completed
, the study is completed.
You can look the result on http://127.0.0.1:3000/katib
.
In Random example, the template for workers is defined in StudyJob manifest. A ConfigMap is also used for worker template. Let's use this template.
kubectl apply -f workerConfigMap.yaml
This template will share among blow three demos(Grid, Hyperband, and GPU).
Almost same as random suggestion.
In this demo, Katib will make 4 grids for learning rate (--lr) Min 0.03 and Max 0.07.
kubectl apply -f grid-example.yaml
In this demo, the eta is 3 and the R is 9.
kubectl apply -f random-example.yaml
You can check your study results with Web UI.
Acsess to http://127.0.0.1:3000/katib
The Results will be saved automatically.
You can set any configuration for your worker pods.
Here, try to set config for GPU.
The manifest of the worker pods are generated from a template.
The templates are defined in ConfigMap.
There are two templates, defaultWorkerTemplate.yaml and gpuWorkerTemplate.yaml.
You can add your template for worker.
Then you should specify the template in your studyjob spec.
This is example for using gpuWorkerTemplate.yaml
.
Set "/worker-template/gpuWorkerTemplate.yaml at workerTemplatePath
field and specify gpu number at workerParameters/Gpu
You can apply it same as other examples.
$ kubectl apply -f gpu-example.yaml
$ kubectl -n katib get studyjob
NAME AGE
gpu-example 1m
random-example 17m
$ kubectl -n katib describe studyjob gpu-example
Name: gpu-example
Namespace: katib
Labels: controller-tools.k8s.io=1.0
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"kubeflow.org/v1alpha1","kind":"StudyJob","metadata":{"annotations":{},"labels":{"controller-tools.k8s.io":"1.0"},"name":"gpu-example","n...
API Version: kubeflow.org/v1alpha1
Kind: StudyJob
Metadata:
Cluster Name:
Creation Timestamp: 2018-08-15T01:48:12Z
Generation: 0
Resource Version: 175002
Self Link: /apis/kubeflow.org/v1alpha1/namespaces/katib/studyjobs/gpu-example
UID: 44afac4c-a02d-11e8-b88c-42010af0008b
Spec:
Study Spec:
Metricsnames:
accuracy
Name: gpu-example
...
Worker Spec:
Command:
python
/mxnet/example/image-classification/train_mnist.py
--batch-size=64
Image: katib/mxnet-mnist-example
Worker Parameters:
Gpu: 1
Worker Template Path: /worker-template/gpuWorkerTemplate.yaml
Worker Type: Default
Status:
Best Objctive Value: <nil>
Conditon: Running
Early Stopping Parameter Id:
Studyid: k549e927046f2136
Suggestion Parameter Id:
Trials:
Trialid: t721857cd426b68b
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: g07cba174ada521e
Trialid: f27c0ac1c6664533
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: h8d5062f2f1b8633
Trialid: v129109d1331a98e
Workeridlist:
Objctive Value: <nil>
Conditon: Running
Workerid: x8f172a64645690e
Check the GPU configuration works correctly.
$ kubectl -n katib describe pod g07cba174ada521e-88wpn
Name: g07cba174ada521e-88wpn
Namespace: katib
Node: <none>
Labels: controller-uid=44bfb99f-a02d-11e8-b88c-42010af0008b
job-name=g07cba174ada521e
Annotations: <none>
Status: Pending
IP:
Controlled By: Job/g07cba174ada521e
Containers:
g07cba174ada521e:
Image: katib/mxnet-mnist-example
Port: <none>
Command:
python
/mxnet/example/image-classification/train_mnist.py
--batch-size=64
--lr=0.0175
--num-layers=2
--optimizer=adam
Limits:
nvidia.com/gpu: 1
Requests:
nvidia.com/gpu: 1
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-knffp (ro)
Conditions:
Type Status
PodScheduled False
Volumes:
default-token-knffp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-knffp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
nvidia.com/gpu:NoSchedule
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 6s (x21 over 4m) default-scheduler 0/3 nodes are available: 3 Insufficient nvidia.com/gpu.
When you use default worker type (It specify Spec.workerSpec.workerType
), the metrics of worker will be collected from default metrics collector.
It is deploy as a cronjob. It will collect and report metrics periodically.
It collect metrics through k8s pod log API.
You should print logs {metrics name}={value} style.
In the above demo, the objective value name is Validation-accuracy and the metrics are accuracy, your training code should print like this.
epoch 1:
batch1 accuracy=0.3
batch2 accuracy=0.5
Validation-accuracy=0.4
epoch 2:
batch1 accuracy=0.7
batch2 accuracy=0.8
Validation-accuracy=0.75
The metrics collector will collect all logs of metrics.
The manifest of metrics collector is also generated from template and defined here.
You can add your template and specify spec.metricsCollectorSpec.metricsCollectorTemplatePath
in a studyjob manifest.
You can export model data to yaml file with CLI.
katib-cli -s {{server-cli}} pull study {{study ID or name}} -o {{filename}}
And you can push your existing models to Katib with CLI.
mnist-models.yaml
is traind 22 models using random suggestion with this Parameter Config.
configs:
- name: --lr
parametertype: 1
feasible:
max: "0.07"
min: "0.03"
list: []
- name: --lr-factor
parametertype: 1
feasible:
max: "0.05"
min: "0.005"
list: []
- name: --lr-step
parametertype: 2
feasible:
max: "20"
min: "5"
list: []
- name: --optimizer
parametertype: 4
feasible:
max: ""
min: ""
list:
- sgd
- adam
- ftrl
You can easy to explore the model on KatibUI.
katib-cli push md -f mnist-models.yaml
Clean up with ./destroy.sh
script.
It will stop port-forward process and delete minikube cluster.