-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
192 lines (164 loc) · 5.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import random
import socket
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, random_split
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from data import AntigenDataset, BaselineDataset, EpitopeDataset, Tokenizer, Tokenizer2
from model import RNN
from utils import plot_roc_curve, predict
RANDOM_SEED = 42
def set_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def train_eval(
model, dataloader, criterion, optimizer=None, scheduler=None, is_train=True
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(is_train)
if is_train:
model.train()
else:
model.eval()
total_loss = 0
total_correct = 0
progress_bar = tqdm(dataloader, ascii=True)
for batch_idx, batch in enumerate(progress_bar):
inputs, labels = batch
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
if is_train:
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
if scheduler:
scheduler.step()
total_loss += loss.item() * len(labels)
progress_bar.set_description_str(
"Batch: {:d}, Loss: {:.4f}".format((batch_idx + 1), loss.item())
)
predictions = torch.argmax(outputs, dim=1)
total_correct += torch.sum(predictions.eq(labels))
return total_loss / len(dataloader.dataset), total_correct / len(dataloader.dataset)
def run_experiment(hparams, epochs=50):
tokenizer = Tokenizer(max_len=40)
train_dataset_ = EpitopeDataset(
"Positive_train.txt",
"Negative_train.txt",
tokenizer=tokenizer,
data_dir="./data",
)
test_dataset = EpitopeDataset(
"Positive_test.txt", "Negative_test.txt", tokenizer=tokenizer, data_dir="./data"
)
valid_size = 1000
train_dataset, valid_dataset = random_split(
train_dataset_, [len(train_dataset_) - valid_size, valid_size]
)
train_loader = DataLoader(
train_dataset,
batch_size=hparams["batch_size"],
shuffle=True,
collate_fn=train_dataset.dataset.collate_fn,
)
valid_loader = DataLoader(
valid_dataset,
batch_size=hparams["batch_size"],
shuffle=False,
collate_fn=valid_dataset.dataset.collate_fn,
)
test_loader = DataLoader(
test_dataset,
batch_size=hparams["batch_size"],
shuffle=False,
collate_fn=test_dataset.collate_fn,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RNN(
tokenizer,
emb_size=hparams["emb_size"],
kernel_size=hparams["kernel_size"],
hidden_size=hparams["hidden_size"],
dropout=hparams["dropout"],
pooling=hparams["pooling"],
).to(device)
optimizer = torch.optim.AdamW(
model.parameters(), lr=hparams["lr"], weight_decay=hparams["l2"], amsgrad=True
)
scheduler1 = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
scheduler2 = torch.optim.lr_scheduler.MultiStepLR(optimizer, [10, 30], gamma=0.5)
scheduler3 = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="min", factor=0.5, patience=5
)
scheduler4 = torch.optim.lr_scheduler.CyclicLR(
optimizer, 0.0001, hparams["lr"], step_size_up=100, cycle_momentum=False
)
criterion = nn.CrossEntropyLoss()
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
log_dir = Path("runs", current_time + "_" + socket.gethostname())
writer = SummaryWriter(log_dir=log_dir)
model_path = log_dir / "lstm.pt"
best_valid_loss = 0
best_valid_acc = 0
for epoch_idx in range(epochs):
train_loss, train_acc = train_eval(model, train_loader, criterion, optimizer)
valid_loss, valid_acc = train_eval(
model, valid_loader, criterion, is_train=False
)
scheduler2.step()
print("Epoch {}".format(epoch_idx))
print(
"Training Loss: {:.4f}. Valid Loss: {:.4f}. ".format(train_loss, valid_loss)
)
print(
"Training Accuracy: {:.4f}. Valid Accuracy: {:.4f}. ".format(
train_acc, valid_acc
)
)
writer.add_scalars(
"Loss", {"train": train_loss, "Valid": valid_loss}, epoch_idx
)
writer.add_scalars(
"Accuracy", {"train": train_acc, "Valid": valid_acc}, epoch_idx
)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
best_valid_loss = valid_loss
torch.save(model, model_path)
model = torch.load(model_path)
_, test_acc = train_eval(model, test_loader, criterion, is_train=False)
print("Test Accuracy: {:.4f}. ".format(test_acc))
writer.add_hparams(hparams, {"hparam/accuracy": test_acc})
inputs, labels = next(iter(train_loader))
inputs = inputs.to(device)
model = model.to(device)
writer.add_graph(model, inputs)
train_labels, train_probs = predict(model, train_loader)
test_labels, test_probs = predict(model, test_loader)
figure = plot_roc_curve(train_labels, train_probs, test_labels, test_probs)
writer.add_figure("ROC", figure)
writer.close()
if __name__ == "__main__":
hparams = {
"lr": 0.005,
"l2": 0.0001,
"batch_size": 1024,
"emb_size": 32,
"kernel_size": 5,
"hidden_size": 128,
"dropout": 0.2,
"pooling": True,
}
set_seed(RANDOM_SEED)
run_experiment(hparams, epochs=50)