-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathevaluation.py
206 lines (185 loc) · 7.02 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import sys
import json
import os
import zipfile
SUCCESS = 0
FILE_ERROR = 1
ENCODING_ERROR = 2
JSON_ERROR = 3
SCHEMA_ERROR = 4
TEXT_ERROR = 5
CODE_INFO = ['success', 'file_reading_error', 'encoding_error', 'json_parse_error', 'schema_error', 'input_text_not_in_dataset']
def del_bookname(entity_name):
"""delete the book name"""
if entity_name.startswith(u'《') and entity_name.endswith(u'》'):
entity_name = entity_name[1:-1]
return entity_name
def load_predict_result(predict_filename):
"""Loads the file to be predicted"""
predict_result = {}
ret_code = SUCCESS
try:
predict_file_zip = zipfile.ZipFile(predict_filename)
except:
ret_code = FILE_ERROR
return predict_result, ret_code
for predict_file in predict_file_zip.namelist():
for line in predict_file_zip.open(predict_file):
try:
line = line.decode('utf8').strip()
except:
ret_code = ENCODING_ERROR
return predict_result, ret_code
try:
json_info = json.loads(line)
except:
ret_code = JSON_ERROR
return predict_result, ret_code
if 'text' not in json_info or 'spo_list' not in json_info:
ret_code = SCHEMA_ERROR
return predict_result, ret_code
sent = json_info['text']
spo_set = set()
for spo_item in json_info['spo_list']:
if type(spo_item) is not dict or 'subject' not in spo_item \
or 'predicate' not in spo_item or 'object' not in spo_item:
ret_code = SCHEMA_ERROR
return predict_result, ret_code
s = del_bookname(spo_item['subject'].lower())
o = del_bookname(spo_item['object'].lower())
spo_set.add((s, spo_item['predicate'], o))
predict_result[sent] = spo_set
return predict_result, ret_code
def load_test_dataset(golden_filename):
"""load golden file"""
golden_dict = {}
ret_code = SUCCESS
with open(golden_filename) as gf:
for line in gf:
try:
line = line.strip()
except:
ret_code = ENCODING_ERROR
return golden_dict, ret_code
try:
json_info = json.loads(line)
except:
ret_code = JSON_ERROR
return golden_dict, ret_code
try:
sent = json_info['text']
spo_list = json_info['spo_list']
except:
ret_code = SCHEMA_ERROR
return golden_dict, ret_code
spo_result = []
for item in spo_list:
o = del_bookname(item['object'].lower())
s = del_bookname(item['subject'].lower())
spo_result.append((s, item['predicate'], o))
spo_result = set(spo_result)
golden_dict[sent] = spo_result
return golden_dict, ret_code
def load_dict(dict_filename):
"""load alias dict"""
alias_dict = {}
ret_code = SUCCESS
if dict_filename == "":
return alias_dict, ret_code
try:
with open(dict_filename) as af:
for line in af:
line = line.strip()
words = line.split('\t')
alias_dict[words[0].lower()] = set()
for alias_word in words[1:]:
alias_dict[words[0].lower()].add(alias_word.lower())
except:
ret_code = FILE_ERROR
return alias_dict, ret_code
def is_spo_correct(spo, golden_spo_set, alias_dict, loc_dict):
"""if the spo is correct"""
if spo in golden_spo_set:
return True
(s, p, o) = spo
# alias dictionary
s_alias_set = alias_dict.get(s, set())
s_alias_set.add(s)
o_alias_set = alias_dict.get(o, set())
o_alias_set.add(o)
for s_a in s_alias_set:
for o_a in o_alias_set:
if (s_a, p, o_a) in golden_spo_set:
return True
for golden_spo in golden_spo_set:
(golden_s, golden_p, golden_o) = golden_spo
golden_o_set = loc_dict.get(golden_o, set())
for g_o in golden_o_set:
if s == golden_s and p == golden_p and o == g_o:
return True
return False
def calc_pr(predict_filename, alias_filename, location_filename, golden_filename):
"""calculate precision, recall, f1"""
ret_info = {}
# load location dict
loc_dict, ret_code = load_dict(location_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
print('loc file is error')
return ret_info
# load alias dict
alias_dict, ret_code = load_dict(alias_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
print('alias file is error')
return ret_info
# load test dataset
golden_dict, ret_code = load_test_dataset(golden_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
print(sys.stderr, 'golden file is error')
return ret_info
# load predict result
predict_result, ret_code = load_predict_result(predict_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
print(sys.stderr, 'predict file is error')
return ret_info
# evaluation
correct_sum, predict_sum, recall_sum = 0.0, 0.0, 0.0
for sent in golden_dict:
golden_spo_set = golden_dict[sent]
predict_spo_set = predict_result.get(sent, set())
recall_sum += len(golden_spo_set)
predict_sum += len(predict_spo_set)
for spo in predict_spo_set:
if is_spo_correct(spo, golden_spo_set, alias_dict, loc_dict):
correct_sum += 1
print('correct spo num = ', correct_sum)
print('submitted spo num = ', predict_sum)
print('golden set spo num = ', recall_sum)
precision = correct_sum / predict_sum if predict_sum > 0 else 0.0
recall = correct_sum / recall_sum if recall_sum > 0 else 0.0
f1 = 2 * precision * recall / (precision + recall) \
if precision + recall > 0 else 0.0
precision = round(precision, 4)
recall = round(recall, 4)
f1 = round(f1, 4)
ret_info['errorCode'] = SUCCESS
ret_info['errorMsg'] = CODE_INFO[SUCCESS]
ret_info['data'] = []
ret_info['data'].append({'name': 'precision', 'value': precision})
ret_info['data'].append({'name': 'recall', 'value': recall})
ret_info['data'].append({'name': 'f1-score', 'value': f1})
return ret_info
if __name__ == '__main__':
golden_filename = "evaluation_data/dev_data/dev_data.json"
predict_filename = "evaluation_data/result_not_keep_empty_spo_list_convert.zip"
location_filename = ""
alias_filename = ""
ret_info = calc_pr(predict_filename, alias_filename, location_filename, golden_filename)
print(json.dumps(ret_info))