-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_mnist.py
229 lines (184 loc) · 6.75 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#%%
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.utils.data import random_split
from torchvision.utils import save_image
import torchvision.transforms as transforms
import os
import numpy as np
from tqdm import tqdm
from time import sleep
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
#%% Default params
PATH_TRAIN = "dataset/mnist.npz"
DIR_OUT = "results/mnist"
BATCH_SIZE = 600
EPOCHS = 200
LR = 1e-3
SPLIT_PERCENT = 0.9
LOG_INT = 50 # log interval
LAMBDA = 1
LAT_DIM = 2
if not os.path.exists(DIR_OUT):
os.makedirs(DIR_OUT)
#%% Dataset
class trainDataset(Dataset):
def __init__(self, images):
self.images = [(img > 128)*1.0 for img in images]
self.trans = transforms.ToTensor()
def __len__(self):
return len(self.images)
def __getitem__(self, i):
img = self.trans(self.images[i]).float()
img = torch.flatten(img)
return img.to(device)
#%% model
class MnistVAE(nn.Module):
def __init__(self, nLatent=2):
super(MnistVAE, self).__init__()
self.fc1 = nn.Sequential(
nn.Linear(784, 196),
nn.BatchNorm1d(196),
nn.ReLU(),
nn.Linear(196, 49),
nn.BatchNorm1d(49),
nn.ReLU(),
)
self.fc2_mu = nn.Linear(49, nLatent)
self.fc2_lo = nn.Linear(49, nLatent)
self.fc3 = nn.Sequential(
nn.Linear(nLatent, 49),
nn.ReLU(),
nn.Linear(49, 196),
nn.ReLU(),
nn.Linear(196, 784),
nn.Sigmoid() # use with BCELoss
)
def encoder(self, x):
x = self.fc1(x)
x1 = self.fc2_mu(x)
x2 = self.fc2_lo(x)
return x1, x2
def reparam(self, mu, logvar):
sigma = torch.exp(0.5*logvar)
z = torch.randn_like(sigma)
return mu + sigma*z
def kl_calc(self, mu, logvar):
return (-0.5*(1 + logvar - mu**2 - torch.exp(logvar)).sum(dim=1)).mean(dim=0)
def decoder(self, x):
return self.fc3(x)
def forward(self, x):
mu, logvar = self.encoder(x)
kl_loss = self.kl_calc(mu, logvar)
x = self.reparam(mu, logvar)
x = self.decoder(x)
return x, kl_loss
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.zeros_(m.bias)
#%%
def train(npz_data):
data_train = trainDataset(npz_data['x_train'])
num_train = int(len(data_train) * SPLIT_PERCENT)
data_train, data_valid = random_split(data_train, [num_train, len(data_train) - num_train])
# kl_weight_train, kl_weight_valid = BATCH_SIZE/len(data_train), BATCH_SIZE/len(data_valid)
print("Train data: %d, Validation data: %d, Train batches: %.2f\n" % \
(len(data_train), len(data_valid), len(data_train)/BATCH_SIZE))
trainloader = DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=True)
validloader = DataLoader(data_valid, batch_size=BATCH_SIZE, shuffle=False)
net = MnistVAE(nLatent=LAT_DIM)
net.apply(init_weights)
net.to(device)
# criterion = nn.BCEWithLogitsLoss(reduction='sum')
criterion = nn.BCELoss(reduction='sum') # last layer needs sigmoid
optimizer = optim.Adam(net.parameters(), lr=LR)
sleep(0.3)
train_loss_hist, valid_loss_hist = [], []
t = tqdm(range(EPOCHS), ncols=200, bar_format='{l_bar}{bar:15}{r_bar}{bar:-10b}', unit='epoch')
for epoch in t:
# train
net.train()
train_loss = 0
for batch_id, image in enumerate(trainloader):
optimizer.zero_grad()
out, kl_loss = net(image)
recon_loss = criterion(out, image)
loss = kl_loss * LAMBDA + recon_loss
loss.backward()
optimizer.step()
train_loss += loss.item()
# validation
net.eval()
valid_loss= 0
with torch.no_grad():
for batch_id, image in enumerate(validloader):
out, kl_loss = net(image)
recon_loss = criterion(out, image)
loss2 = kl_loss * LAMBDA + recon_loss
valid_loss += loss2.item()
# validation images
if (epoch+1) % LOG_INT == 0 and batch_id == 0:
img_list = out[:64]
img_list = img_list.reshape(-1, 1, 28, 28)
# grid_img = make_grid(img_list, nrow=8).permute(1,2,0)
out_filename = f"{DIR_OUT}/lambda_{LAMBDA}_epoch_{epoch+1}.png"
save_image(img_list, out_filename)
train_loss = train_loss/len(data_train)
valid_loss = valid_loss/len(data_valid)
tl_post = "%3.4f" % (train_loss)
vl_post = "%3.4f" % (valid_loss)
t.set_postfix({"T_Loss": tl_post, "V_Loss": vl_post})
t.update(0)
train_loss_hist.append(train_loss)
valid_loss_hist.append(valid_loss)
# plot loss
plt.figure()
plt.plot(train_loss_hist, label="Train")
plt.plot(valid_loss_hist, label="Valid")
plt.title("Average Loss History")
plt.legend()
plt.xlabel("Epochs")
plt.show()
return net
#%%
def interp_vectors(start, stop, ncols):
steps = (1.0/(ncols-1)) * (stop - start)
return np.vstack([(start + steps*x) for x in range(ncols)])
def generateImg(net, randn_mult=5, nrows=8):
# fake images
fake_in = np.random.randn(nrows**2, LAT_DIM)*randn_mult
fake_in = torch.from_numpy(fake_in).to(device).float()
fake_imgs = net.decoder(fake_in)
fake_imgs = fake_imgs.reshape(-1, 1, 28, 28)
fake_filename = f"{DIR_OUT}/lambda_{LAMBDA}_fake.png"
save_image(fake_imgs, fake_filename, nrow=nrows)
# fake images interpolation
if LAT_DIM == 2:
a = np.array([-randn_mult,-randn_mult])
b = np.array([randn_mult,-randn_mult])
c = np.array([-randn_mult,randn_mult])
d = np.array([randn_mult,randn_mult])
else:
a = np.random.randn(1, LAT_DIM)*randn_mult
b = np.random.randn(1, LAT_DIM)*randn_mult
c = np.random.randn(1, LAT_DIM)*randn_mult
d = np.random.randn(1, LAT_DIM)*randn_mult
r1, r2 = interp_vectors(a, b, nrows), interp_vectors(c, d, nrows)
interp_in = torch.from_numpy(interp_vectors(r1, r2, nrows)).to(device).float()
interp_out = net.decoder(interp_in)
interp_out = interp_out.reshape(-1, 1, 28, 28)
interp_filename = f"{DIR_OUT}/lambda_{LAMBDA}_interp.png"
save_image(interp_out, interp_filename, nrow=nrows)
#%% main
if __name__ == "__main__":
mnist_npz = np.load(PATH_TRAIN)
net = train(mnist_npz)
if str(device) == 'cuda':
torch.cuda.empty_cache()
generateImg(net, nrows=10, randn_mult=12)