-
Notifications
You must be signed in to change notification settings - Fork 12
/
tcp6_6to4_frag.c
737 lines (601 loc) · 23.4 KB
/
tcp6_6to4_frag.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/* Copyright (C) 2012-2013 P.D. Buchan (pdbuchan@yahoo.com)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Send an IPv6 TCP packet through an IPv4 tunnel (6to4) via raw socket
// at the link layer (ethernet frame) with a large payload requiring fragmentation.
// Includes a TCP header option. Need to have destination MAC address.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> // close()
#include <string.h> // strcpy, memset(), and memcpy()
#include <netdb.h> // struct addrinfo
#include <sys/types.h> // needed for socket(), uint8_t, uint16_t, uint32_t
#include <sys/socket.h> // needed for socket()
#include <netinet/in.h> // IPPROTO_IPV6, IPPROTO_TCP, IPPROTO_FRAGMENT, INET_ADDRSTRLEN, INET6_ADDRSTRLEN
#include <netinet/ip.h> // struct ip and IP_MAXPACKET (which is 65535)
#define __FAVOR_BSD // Use BSD format of tcp header
#include <netinet/ip6.h> // struct ip6_hdr
#include <netinet/tcp.h> // struct tcphdr
#include <arpa/inet.h> // inet_pton() and inet_ntop()
#include <sys/ioctl.h> // macro ioctl is defined
#include <bits/ioctls.h> // defines values for argument "request" of ioctl. Here, we need SIOCGIFHWADDR.
#include <net/if.h> // struct ifreq
#include <linux/if_ether.h> // ETH_P_IP = 0x0800, ETH_P_IPV6 = 0x86DD
#include <linux/if_packet.h> // struct sockaddr_ll (see man 7 packet)
#include <net/ethernet.h>
#include <errno.h> // errno, perror()
// Define some constants.
#define ETH_HDRLEN 14 // Ethernet header length
#define IP4_HDRLEN 20 // IPv4 header length
#define IP6_HDRLEN 40 // IPv6 header length
#define FRG_HDRLEN 8 // IPv6 fragment header
#define TCP_HDRLEN 20 // TCP header length, excludes options data
// Function prototypes
uint16_t checksum (uint16_t *, int);
uint16_t tcp6_checksum (struct ip6_hdr, struct tcphdr, int, uint8_t *, int, uint8_t *, int);
char *allocate_strmem (int);
uint8_t *allocate_ustrmem (int);
int *allocate_intmem (int);
int
main (int argc, char **argv)
{
const int MAX_FRAGS = 1597; // Maximum number of packet fragments (int) (65535 - TCP_HDRLEN) / (IP6_HDRLEN + 1 data byte))
int i, n, status, frame_length, sd, bytes, opt_len, opt_pad, *frag_flags;
int *ip4_flags, *tcp_flags, c, nframes, offset[MAX_FRAGS], len[MAX_FRAGS];
char *interface, *target4, *target6, *source4, *source6, *src_ip, *dst_ip;
struct ip ip4hdr;
struct ip6_hdr ip6hdr;
struct ip6_frag fraghdr;
struct tcphdr tcphdr;
int payloadlen, bufferlen;
uint8_t *options, *payload, *buffer, *src_mac, *dst_mac, *ether_frame;
struct addrinfo hints, *res;
struct sockaddr_in6 *ipv6;
struct sockaddr_ll device;
struct ifreq ifr;
void *tmp;
FILE *fi;
// Allocate memory for various arrays.
target4 = allocate_strmem (INET_ADDRSTRLEN);
target6 = allocate_strmem (INET6_ADDRSTRLEN);
source4 = allocate_strmem (INET_ADDRSTRLEN);
source6 = allocate_strmem (INET6_ADDRSTRLEN);
src_ip = allocate_strmem (INET6_ADDRSTRLEN);
dst_ip = allocate_strmem (INET6_ADDRSTRLEN);
ip4_flags = allocate_intmem (4);
tcp_flags = allocate_intmem (8);
src_mac = allocate_ustrmem (6);
dst_mac = allocate_ustrmem (6);
ether_frame = allocate_ustrmem (IP_MAXPACKET);
interface = allocate_strmem (40);
options = allocate_ustrmem (40);
frag_flags = allocate_intmem (2);
payload = allocate_ustrmem (IP_MAXPACKET);
// Interface to send packet through.
strcpy (interface, "eth0");
// Submit request for a socket descriptor to look up interface.
if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) < 0) {
perror ("socket() failed to get socket descriptor for using ioctl() ");
exit (EXIT_FAILURE);
}
// Use ioctl() to look up interface name and get its MAC address.
memset (&ifr, 0, sizeof (ifr));
snprintf (ifr.ifr_name, sizeof (ifr.ifr_name), "%s", interface);
if (ioctl (sd, SIOCGIFHWADDR, &ifr) < 0) {
perror ("ioctl() failed to get source MAC address ");
return (EXIT_FAILURE);
}
close (sd);
// Copy source MAC address.
memcpy (src_mac, ifr.ifr_hwaddr.sa_data, 6 * sizeof (uint8_t));
// Report source MAC address to stdout.
printf ("MAC address for interface %s is ", interface);
for (i=0; i<5; i++) {
printf ("%02x:", src_mac[i]);
}
printf ("%02x\n", src_mac[5]);
// Find interface index from interface name and store index in
// struct sockaddr_ll device, which will be used as an argument of sendto().
if ((device.sll_ifindex = if_nametoindex (interface)) == 0) {
perror ("if_nametoindex() failed to obtain interface index ");
exit (EXIT_FAILURE);
}
printf ("Index for interface %s is %i\n", interface, device.sll_ifindex);
// Set destination MAC address: you need to fill these out
dst_mac[0] = 0xff;
dst_mac[1] = 0xff;
dst_mac[2] = 0xff;
dst_mac[3] = 0xff;
dst_mac[4] = 0xff;
dst_mac[5] = 0xff;
// Source IPv4 address: you need to fill this out
strcpy (source4, "192.168.1.132");
// Source IPv6 address: you need to fill this out
strcpy (source6, "2001:db8::214:51ff:fe2f:1556");
// IPv4 target as the 6to4 anycast address (do not change)
strcpy (target4, "192.88.99.1");
// Target URL or IPv6 address: you need to fill this out
strcpy (target6, "ipv6.google.com");
// Fill out hints for getaddrinfo().
memset (&hints, 0, sizeof (struct addrinfo));
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_RAW;
hints.ai_flags = hints.ai_flags | AI_CANONNAME;
// Resolve source using getaddrinfo().
if ((status = getaddrinfo (source6, NULL, &hints, &res)) != 0) {
fprintf (stderr, "getaddrinfo() failed: %s\n", gai_strerror (status));
return (EXIT_FAILURE);
}
ipv6 = (struct sockaddr_in6 *) res->ai_addr;
tmp = &(ipv6->sin6_addr);
if (inet_ntop (AF_INET6, tmp, src_ip, INET6_ADDRSTRLEN) == NULL) {
status = errno;
fprintf (stderr, "inet_ntop() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
freeaddrinfo (res);
// Resolve target using getaddrinfo().
if ((status = getaddrinfo (target6, NULL, &hints, &res)) != 0) {
fprintf (stderr, "getaddrinfo() failed: %s\n", gai_strerror (status));
return (EXIT_FAILURE);
}
ipv6 = (struct sockaddr_in6 *) res->ai_addr;
tmp = &(ipv6->sin6_addr);
if (inet_ntop (AF_INET6, tmp, dst_ip, INET6_ADDRSTRLEN) == NULL) {
status = errno;
fprintf (stderr, "inet_ntop() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
freeaddrinfo (res);
// Fill out sockaddr_ll.
device.sll_family = AF_PACKET;
memcpy (device.sll_addr, src_mac, 6 * sizeof (uint8_t));
device.sll_halen = htons (6);
// TCP Options
// Here we introduce one TCP option.
opt_len = 0;
options[0] = 2u; opt_len++; // Option kind 2 = maximum segment size
options[1] = 4u; opt_len++; // This option kind is 4 bytes long
options[2] = 0x1u; opt_len++; // Set maximum segment size to 0x100 = 256
options[3] = 0x0u; opt_len++;
// Pad TCP options to the next 4-byte boundary.
opt_pad = 0;
while (((opt_len + opt_pad)%4) != 0) {
opt_pad++;
}
// Get TCP data.
i = 0;
fi = fopen ("data", "r");
if (fi == NULL) {
printf ("Can't open file 'data'.\n");
exit (EXIT_FAILURE);
}
while ((n=fgetc (fi)) != EOF) {
payload[i] = n;
i++;
}
fclose (fi);
payloadlen = i;
printf ("IPv6 header length (bytes): %i\n", IP6_HDRLEN);
printf ("Upper layer protocol header (TCP) length (bytes): %i\n", TCP_HDRLEN);
printf ("TCP options length (bytes): %i\n", opt_len);
printf ("TCP options padding length (bytes): %i\n", opt_pad);
printf ("Payload length (bytes): %i\n", payloadlen);
// Length of fragmentable portion of packet.
bufferlen = TCP_HDRLEN + opt_len + opt_pad + payloadlen;
printf ("Total fragmentable data (bytes): %i\n", bufferlen);
// Allocate memory for a buffer for fragmentable portion.
buffer = allocate_ustrmem (bufferlen);
// Determine how many ethernet frames we'll need.
// Fragment IPv6 packet with fragmentation extension headers as usual,
// but use an MTU of 1280 bytes as per Section 3.2.1 of RFC 4213.
// Then prepend an IPv4 header (with appropriate 6to4 settings) on each fragment later.
memset (len, 0, MAX_FRAGS * sizeof (int));
memset (offset, 0, MAX_FRAGS * sizeof (int));
i = 0;
c = 0; // Variable c is index to buffer, which contains upper layer protocol header and data.
while (c < bufferlen) {
// Do we still need to fragment remainder of fragmentable portion?
if ((bufferlen - c) > (1280 - IP4_HDRLEN - IP6_HDRLEN - FRG_HDRLEN)) { // Yes
len[i] = 1280 - IP4_HDRLEN - IP6_HDRLEN - FRG_HDRLEN; // len[i] is amount of fragmentable part we can include in this frame.
} else { // No
len[i] = bufferlen - c; // len[i] is amount of fragmentable part we can include in this frame.
}
c += len[i];
// If not last fragment, make sure we have an even number of 8-byte blocks.
// Reduce length as necessary.
if (c < (bufferlen - 1)) {
while ((len[i]%8) > 0) {
len[i]--;
c--;
}
}
printf ("Frag: %i, Data (bytes): %i, Data Offset (8-byte blocks): %i\n", i, len[i], offset[i]);
i++;
offset[i] = (len[i-1] / 8) + offset[i-1];
}
nframes = i;
printf ("Total number of frames to send: %i\n", nframes);
// IPv4 header (Section 3.5 of RFC 4213)
// IPv4 header length (4 bits): Number of 32-bit words in header = 5
ip4hdr.ip_hl = sizeof (struct ip) / sizeof (uint32_t);
// Internet Protocol version (4 bits): IPv4
ip4hdr.ip_v = 4;
// Type of service (8 bits)
ip4hdr.ip_tos = 0;
// Total length of datagram (16 bits)
// ip4hdr.ip_len is set for each fragment in loop below.
// ID sequence number (16 bits)
ip4hdr.ip_id = htons (31415);
// Flags, and Fragmentation offset (3, 13 bits)
// Zero (1 bit)
ip4_flags[0] = 0;
// Do not fragment flag (1 bit)
// Must not be set, as per Section 3.2.1 of RFC 4213.
ip4_flags[1] = 0;
// More fragments following flag (1 bit): zero, since we fragment at IPv6 level instead.
ip4_flags[2] = 0u;
// Fragmentation offset (13 bits)
ip4_flags[3] = 0;
// Flags, and Fragmentation offset (3, 13 bits)
ip4hdr.ip_off = htons ((ip4_flags[0] << 15)
+ (ip4_flags[1] << 14)
+ (ip4_flags[2] << 13)
+ ip4_flags[3]);
// Time-to-Live (8 bits): use maximum value
ip4hdr.ip_ttl = 255;
// Transport layer protocol (8 bits): 41 for IPv6 (Section 3.5 of RFC 4213)
ip4hdr.ip_p = IPPROTO_IPV6;
// Source IPv4 address (32 bits)
if ((status = inet_pton (AF_INET, source4, &(ip4hdr.ip_src))) != 1) {
fprintf (stderr, "inet_pton() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
// Destination IPv4 address (32 bits)
if ((status = inet_pton (AF_INET, target4, &(ip4hdr.ip_dst))) != 1) {
fprintf (stderr, "inet_pton() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
// IPv4 header checksum (16 bits) - set to 0 when calculating checksum
ip4hdr.ip_sum = 0;
ip4hdr.ip_sum = checksum ((uint16_t *) &ip4hdr, IP4_HDRLEN);
// IPv6 header
// IPv6 version (4 bits), Traffic class (8 bits), Flow label (20 bits)
ip6hdr.ip6_flow = htonl ((6 << 28) | (0 << 20) | 0);
// Payload length (16 bits): fragmentable portion of packet. i.e., TCP header + TCP options + TCP option padding + TCP payload data
ip6hdr.ip6_plen = htons (TCP_HDRLEN + opt_len + opt_pad + payloadlen);
// Next header (8 bits) - 6 for TCP
// This will be changed if we need to fragment but we'll change this to
// 44 only in ether_frame because otherwise TCP checksum will be wrong.
ip6hdr.ip6_nxt = IPPROTO_TCP;
// Hop limit (8 bits) - use 255 (RFC 4861)
ip6hdr.ip6_hops = 255;
// Source IPv6 address (128 bits)
if ((status = inet_pton (AF_INET6, src_ip, &(ip6hdr.ip6_src))) != 1) {
fprintf (stderr, "inet_pton() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
// Destination IPv6 address (128 bits)
if ((status = inet_pton (AF_INET6, dst_ip, &(ip6hdr.ip6_dst))) != 1) {
fprintf (stderr, "inet_pton() failed.\nError message: %s", strerror (status));
exit (EXIT_FAILURE);
}
// TCP header
// Source port number (16 bits)
tcphdr.th_sport = htons (60);
// Destination port number (16 bits)
tcphdr.th_dport = htons (80);
// Sequence number (32 bits)
tcphdr.th_seq = htonl (0);
// Acknowledgement number (32 bits)
tcphdr.th_ack = htonl (0);
// Reserved (4 bits): should be 0
tcphdr.th_x2 = 0;
// Data offset (4 bits): size of TCP header in 32-bit words
tcphdr.th_off = (TCP_HDRLEN + opt_len + opt_pad) / 4;
// Flags (8 bits)
// FIN flag (1 bit)
tcp_flags[0] = 0;
// SYN flag (1 bit)
tcp_flags[1] = 0;
// RST flag (1 bit)
tcp_flags[2] = 0;
// PSH flag (1 bit)
tcp_flags[3] = 1;
// ACK flag (1 bit)
tcp_flags[4] = 1;
// URG flag (1 bit)
tcp_flags[5] = 0;
// ECE flag (1 bit)
tcp_flags[6] = 0;
// CWR flag (1 bit)
tcp_flags[7] = 0;
tcphdr.th_flags = 0;
for (i=0; i<8; i++) {
tcphdr.th_flags += (tcp_flags[i] << i);
}
// Window size (16 bits)
tcphdr.th_win = htons (65535);
// Urgent pointer (16 bits): 0 (only valid if URG flag is set)
tcphdr.th_urp = htons (0);
// TCP checksum (16 bits)
tcphdr.th_sum = tcp6_checksum (ip6hdr, tcphdr, opt_len, options, opt_pad, payload, payloadlen);
// Build fragmentable portion of packet in buffer array.
memcpy (buffer, &tcphdr, TCP_HDRLEN * sizeof (uint8_t)); // TCP header
memcpy (buffer + TCP_HDRLEN, options, opt_len * sizeof (uint8_t)); // TCP options
memcpy (buffer + TCP_HDRLEN + opt_len + opt_pad, payload, payloadlen * sizeof (uint8_t)); // TCP data (note the offset for padding)
// IPv6 next header (8 bits)
if (nframes == 1) {
ip6hdr.ip6_nxt = IPPROTO_TCP; // 6 for TCP
} else {
ip6hdr.ip6_nxt = IPPROTO_FRAGMENT; // 44 for Fragmentation extension header
}
// Submit request for a raw socket descriptor.
if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) < 0) {
perror ("socket() failed ");
exit (EXIT_FAILURE);
}
// Loop through fragments.
for (i=0; i<nframes; i++) {
// Set ethernet frame contents to zero initially.
memset (ether_frame, 0, IP_MAXPACKET * sizeof (uint8_t));
// Fill out ethernet frame header.
// Copy destination and source MAC addresses to ethernet frame.
memcpy (ether_frame, dst_mac, 6 * sizeof (uint8_t));
memcpy (ether_frame + 6, src_mac, 6 * sizeof (uint8_t));
// Next is ethernet type code (ETH_P_IP for IPv4).
// http://www.iana.org/assignments/ethernet-numbers
ether_frame[12] = ETH_P_IP / 256;
ether_frame[13] = ETH_P_IP % 256;
// Next is ethernet frame data (IPv4 header + IPv6 header + [fragmentation extension header] + fragment).
// Total length of datagram (16 bits): IPv4 header + IPv6 header + [fragmentation extension header] + fragment
if (nframes == 1) {
ip4hdr.ip_len = htons (IP4_HDRLEN + IP6_HDRLEN + len[i]);
} else {
ip4hdr.ip_len = htons (IP4_HDRLEN + IP6_HDRLEN + FRG_HDRLEN + len[i]);
}
// IPv4 header checksum (16 bits)
ip4hdr.ip_sum = 0;
ip4hdr.ip_sum = checksum ((uint16_t *) &ip4hdr, IP4_HDRLEN);
// Copy IPv4 header to ethernet frame.
memcpy (ether_frame + ETH_HDRLEN, &ip4hdr, IP4_HDRLEN * sizeof (uint8_t));
// Payload length (16 bits): See 4.5 of RFC 2460.
if (nframes == 1) {
ip6hdr.ip6_plen = htons (len[i]);
} else {
ip6hdr.ip6_plen = htons (FRG_HDRLEN + len[i]);
}
// Copy IPv6 header to ethernet frame.
memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN, &ip6hdr, IP6_HDRLEN * sizeof (uint8_t));
// Fill out and copy fragmentation extension header to ethernet frame.
if (nframes > 1) {
fraghdr.ip6f_nxt = IPPROTO_TCP; // Upper layer protocol
fraghdr.ip6f_reserved = 0; // Reserved
frag_flags[1] = 0; // Reserved
if (i < (nframes - 1)) {
frag_flags[0] = 1; // More fragments to follow
} else {
frag_flags[0] = 0; // This is the last fragment
}
fraghdr.ip6f_offlg = htons ((offset[i] << 3) + frag_flags[0] + (frag_flags[1] <<1));
fraghdr.ip6f_ident = htonl (31415);
memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN + IP6_HDRLEN, &fraghdr, FRG_HDRLEN * sizeof (uint8_t));
}
// Copy fragmentable portion of packet to ethernet frame.
if (nframes == 1) {
memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN + IP6_HDRLEN, buffer, bufferlen * sizeof (uint8_t));
} else {
memcpy (ether_frame + ETH_HDRLEN + IP4_HDRLEN + IP6_HDRLEN + FRG_HDRLEN, buffer + (offset[i] * 8), len[i] * sizeof (uint8_t));
}
// Ethernet frame length = ethernet header (MAC + MAC + ethernet type) + ethernet data (IPv4 header + IPv6 header + [fragment header] + fragment)
if (nframes == 1) {
frame_length = ETH_HDRLEN + IP4_HDRLEN + IP6_HDRLEN + len[i];
} else {
frame_length = ETH_HDRLEN + IP4_HDRLEN + IP6_HDRLEN + FRG_HDRLEN + len[i];
}
// Send ethernet frame to socket.
printf ("Sending fragment: %i\n", i);
if ((bytes = sendto (sd, ether_frame, frame_length, 0, (struct sockaddr *) &device, sizeof (device))) <= 0) {
perror ("sendto() failed");
exit (EXIT_FAILURE);
}
} // End loop nframes
// Close socket descriptor.
close (sd);
// Free allocated memory.
free (target4);
free (target6);
free (source4);
free (source6);
free (src_mac);
free (dst_mac);
free (ether_frame);
free (interface);
free (src_ip);
free (dst_ip);
free (ip4_flags);
free (tcp_flags);
free (options);
free (frag_flags);
free (payload);
free (buffer);
return (EXIT_SUCCESS);
}
// Checksum function
uint16_t
checksum (uint16_t *addr, int len)
{
int nleft = len;
int sum = 0;
uint16_t *w = addr;
uint16_t answer = 0;
while (nleft > 1) {
sum += *w++;
nleft -= sizeof (uint16_t);
}
if (nleft == 1) {
*(uint8_t *) (&answer) = *(uint8_t *) w;
sum += answer;
}
sum = (sum >> 16) + (sum & 0xFFFF);
sum += (sum >> 16);
answer = ~sum;
return (answer);
}
// Build IPv6 TCP pseudo-header and call checksum function (Section 8.1 of RFC 2460).
uint16_t
tcp6_checksum (struct ip6_hdr iphdr, struct tcphdr tcphdr, int opt_len, uint8_t *options, int opt_pad, uint8_t *payload, int payloadlen)
{
uint32_t lvalue;
char buf[IP_MAXPACKET], cvalue;
char *ptr;
int chksumlen = 0;
int i;
memset (buf, 0, IP_MAXPACKET * sizeof (uint8_t));
ptr = &buf[0]; // ptr points to beginning of buffer buf
// Copy source IP address into buf (128 bits)
memcpy (ptr, &iphdr.ip6_src.s6_addr, sizeof (iphdr.ip6_src.s6_addr));
ptr += sizeof (iphdr.ip6_src.s6_addr);
chksumlen += sizeof (iphdr.ip6_src.s6_addr);
// Copy destination IP address into buf (128 bits)
memcpy (ptr, &iphdr.ip6_dst.s6_addr, sizeof (iphdr.ip6_dst.s6_addr));
ptr += sizeof (iphdr.ip6_dst.s6_addr);
chksumlen += sizeof (iphdr.ip6_dst.s6_addr);
// Copy TCP length to buf (32 bits)
lvalue = htonl (sizeof (tcphdr) + opt_len + opt_pad + payloadlen);
memcpy (ptr, &lvalue, sizeof (lvalue));
ptr += sizeof (lvalue);
chksumlen += sizeof (lvalue);
// Copy zero field to buf (24 bits)
*ptr = 0; ptr++;
*ptr = 0; ptr++;
*ptr = 0; ptr++;
chksumlen += 3;
// Copy next header field to buf (8 bits)
memcpy (ptr, &iphdr.ip6_nxt, sizeof (iphdr.ip6_nxt));
ptr += sizeof (iphdr.ip6_nxt);
chksumlen += sizeof (iphdr.ip6_nxt);
// Copy TCP source port to buf (16 bits)
memcpy (ptr, &tcphdr.th_sport, sizeof (tcphdr.th_sport));
ptr += sizeof (tcphdr.th_sport);
chksumlen += sizeof (tcphdr.th_sport);
// Copy TCP destination port to buf (16 bits)
memcpy (ptr, &tcphdr.th_dport, sizeof (tcphdr.th_dport));
ptr += sizeof (tcphdr.th_dport);
chksumlen += sizeof (tcphdr.th_dport);
// Copy sequence number to buf (32 bits)
memcpy (ptr, &tcphdr.th_seq, sizeof (tcphdr.th_seq));
ptr += sizeof (tcphdr.th_seq);
chksumlen += sizeof (tcphdr.th_seq);
// Copy acknowledgement number to buf (32 bits)
memcpy (ptr, &tcphdr.th_ack, sizeof (tcphdr.th_ack));
ptr += sizeof (tcphdr.th_ack);
chksumlen += sizeof (tcphdr.th_ack);
// Copy data offset to buf (4 bits) and
// copy reserved bits to buf (4 bits)
// NOTE: It is assumed here that the data offset value
// already accounts for any options padding.
cvalue = (tcphdr.th_off << 4) + tcphdr.th_x2;
memcpy (ptr, &cvalue, sizeof (cvalue));
ptr += sizeof (cvalue);
chksumlen += sizeof (cvalue);
// Copy TCP flags to buf (8 bits)
memcpy (ptr, &tcphdr.th_flags, sizeof (tcphdr.th_flags));
ptr += sizeof (tcphdr.th_flags);
chksumlen += sizeof (tcphdr.th_flags);
// Copy TCP window size to buf (16 bits)
memcpy (ptr, &tcphdr.th_win, sizeof (tcphdr.th_win));
ptr += sizeof (tcphdr.th_win);
chksumlen += sizeof (tcphdr.th_win);
// Copy TCP checksum to buf (16 bits)
// Zero, since we don't know it yet
*ptr = 0; ptr++;
*ptr = 0; ptr++;
chksumlen += 2;
// Copy urgent pointer to buf (16 bits)
memcpy (ptr, &tcphdr.th_urp, sizeof (tcphdr.th_urp));
ptr += sizeof (tcphdr.th_urp);
chksumlen += sizeof (tcphdr.th_urp);
// Copy TCP options into buf.
memcpy (ptr, options, opt_len * sizeof (uint8_t));
ptr += opt_len;
chksumlen += opt_len;
// Pad options to the next 32-bit boundary.
ptr += opt_pad;
chksumlen += opt_pad;
// Copy payload to buf
memcpy (ptr, payload, payloadlen * sizeof (uint8_t));
ptr += payloadlen;
chksumlen += payloadlen;
// Pad to the next 16-bit boundary
i = 0;
while (((payloadlen+i)%2) != 0) {
i++;
chksumlen++;
ptr++;
}
return checksum ((uint16_t *) buf, chksumlen);
}
// Allocate memory for an array of chars.
char *
allocate_strmem (int len)
{
void *tmp;
if (len <= 0) {
fprintf (stderr, "ERROR: Cannot allocate memory because len = %i in allocate_strmem().\n", len);
exit (EXIT_FAILURE);
}
tmp = (char *) malloc (len * sizeof (char));
if (tmp != NULL) {
memset (tmp, 0, len * sizeof (char));
return (tmp);
} else {
fprintf (stderr, "ERROR: Cannot allocate memory for array allocate_strmem().\n");
exit (EXIT_FAILURE);
}
}
// Allocate memory for an array of unsigned chars.
uint8_t *
allocate_ustrmem (int len)
{
void *tmp;
if (len <= 0) {
fprintf (stderr, "ERROR: Cannot allocate memory because len = %i in allocate_ustrmem().\n", len);
exit (EXIT_FAILURE);
}
tmp = (uint8_t *) malloc (len * sizeof (uint8_t));
if (tmp != NULL) {
memset (tmp, 0, len * sizeof (uint8_t));
return (tmp);
} else {
fprintf (stderr, "ERROR: Cannot allocate memory for array allocate_ustrmem().\n");
exit (EXIT_FAILURE);
}
}
// Allocate memory for an array of ints.
int *
allocate_intmem (int len)
{
void *tmp;
if (len <= 0) {
fprintf (stderr, "ERROR: Cannot allocate memory because len = %i in allocate_intmem().\n", len);
exit (EXIT_FAILURE);
}
tmp = (int *) malloc (len * sizeof (int));
if (tmp != NULL) {
memset (tmp, 0, len * sizeof (int));
return (tmp);
} else {
fprintf (stderr, "ERROR: Cannot allocate memory for array allocate_intmem().\n");
exit (EXIT_FAILURE);
}
}