-
Notifications
You must be signed in to change notification settings - Fork 102
/
sound2gyro.m
226 lines (210 loc) · 5.7 KB
/
sound2gyro.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% sound2gyro.m
% evaluate effect of sound signal on phone internal gyro
% publish('sound2gyro.m','doc');
Fs = 200; % 200 sps default
[filenam, pathnam] = uigetfile('*.txt', 'get measurements data file');
fid = fopen(filenam,'r');
% 0.0
% 0.000000 -0.044288
% 5046272.000000 -0.044288
% L2:L212 =[txyz] (tinnsec)
% repeat n times
n=20;
f_in = zeros(n,1);
txyz = zeros(200,4,n);
frewind(fid),
i=1;
f_in(i) = str2double(fgetl(fid)); % read a line, 1st is noise freq
while ~isnan(f_in(i))
linenums = 4;
cntlines = 1;
while linenums == 4
% # of nums per line
% counting for sampnum
% loop to read one noise sequence
tt = fgetl(fid);
ttnum = str2num(tt);
linenums = length(ttnum); %
if linenums ==4,
txyz(cntlines,:,i) = ttnum;
cntlines = cntlines+1;
end;
end;
% get next line chars
% make numbers
sampnum = cntlines - 1; % last was 1 or nan
i = i+1;
if isempty(ttnum), f_in(i)=nan; else f_in(i) = ttnum; end;
end
f_in(i:end)=[]; % clean the rest
txyz(:,:,i:end) = [];
n = i-1; % last one was NAN
% set # of columns for plots
if n>5
pcols = 2;
else
pcols = 1;
end;
prows = n/pcols;
fclose(fid);
filenam = 'RAFDOCS-#7775044Magn.TXT';
if findstr(filenam,'77750') % .. 28 | 44
savetxyz = txyz;
resamp; % returns newtxyz, f_in, Fs, nlen
len = min(nlen);
txyz = zeros(len,4, length(f_in));
for kf = 1:n,
txyz(:,:,kf) = newtxyz{kf}(1:len,:);
end
xyz = txyz(:,2:4,:);
time = squeeze(txyz(:,1,:));
t = time;
else %% verify, update -> len, n
len = 199;
% clean
% orig in nsec, Fs
% clean
t = repmat((0:len-1)'/Fs,1,n);
end;
xyzstr = 'XYZ';
xyz = txyz(1:len,2:4,:); % 199x3xn
% x10 = squeeze(txyz(1:len,2,:));
% y10 = squeeze(txyz(1:len,3,:));
% z10 = squeeze(txyz(1:len,4,:));
for d = 1:3 % dimensions
figure
mn = min(min(squeeze(xyz(:,d,:))));
mx = max(max(squeeze(xyz(:,d,:))));
for i=1:n
subplot(prows, pcols,i)
curr = xyz(:,d,i);
plot(t(:,i),curr,'.-')
axis([0 t(end,i) mn mx]);
title([ xyzstr(d) '-meas. for freq = ' num2str(f_in(i)) ' Hz'])
xlabel('time [s]'), grid on
end;
if pcols>1,
set(gcf,'posi',[80 80 750 1000])
end;
emarkpl( filenam)
end;
figure;
plot(diff(t(:,:)))
xlabel ('sample #')
ylabel('diff(time) [sec]')
title('Sample time interval variation')
dtser = diff(t);
[Val, Bin]=hist(dtser(:),100); % Val, Bin
line(Val*len/max(Val),Bin,'linew',3,'colo','k')
axis tight
tmu = mean(dtser(:));
tsi = std (dtser(:));
legend(['\mu= ' num2str(tmu*1e3) ', \sigma= ' num2str(tsi*1e3) ' [ms]'])
emarkpl( filenam);
means = zeros(3,n);
sigms = means;
s1=24; % 1st sample
if findstr(filenam,'7775028')
s1 = 10;
end;
xyzCln = cell(3,1); % each cell is X, Y or Z, no transient
linecol='bgrcmyk'; % colors order
for d = 1:3 % dim
xyzCln{d} = squeeze(xyz(s1:len,d,:)); %176xn samples, dimension d, all n freqs
mn = min(xyzCln{d}(:)); mx = max(xyzCln{d}(:));
aa = [0 1 mn mx]; % for all subplot axes
figure
for i=1:n
subplot(prows, pcols,i)
plot(t(s1:len,i),xyzCln{d}(:,i),'.-')
axis(aa); grid on
title([ xyzstr(d) '-meas. for freq = ' num2str(f_in(i)) ' Hz'])
%sqd = squeeze(txyz(s1:len,d+1,i));
means(d,i) = mean(xyzCln{d}(:,i));
sigms(d,i) = std (xyzCln{d}(:,i));
xlabel(['[\mu \sigma]=[' num2str([means(d,i) sigms(d,i)]) ']'])
end
if pcols>1
set(gcf,'posi',[80 80 750 1000])
end;
emarkpl( filenam)
end;
subplot(211)
%semilogx(f_in, means','.-')
plot(f_in, means','.-')
title('mean')
legend('X', 'Y', 'Z',0)
axis tight, grid on
subplot(212)
%semilogx(f_in, sigms','.-')
plot(f_in, sigms','.-')
title('sigma')
legend('X', 'Y', 'Z',0)
xlabel ('disturb. freq')
axis tight, grid on
emarkpl( filenam)
figure
for d=1:3
subplot(3,1,d)
stem3(f_in,t(s1:end,1), xyzCln{d},'.')
view(-26,34)
mesh(audiof,t(s1:end,1), squeeze(xyz(s1:end,d,:)))
contour3(audiof,t(s1:end,1), squeeze(xyz(s1:end,d,:)))
xlabel('freq[Hz]'), ylabel('time[sec]'), title(xyzstr(d))
axis tight
end;
if pcols>1,
set(gcf,'posi',[80 80 750 1000])
end
emarkpl( filenam);
Hs=spectrum.welch;
% EstimationMethod: 'Welch'
% SegmentLength: 64
% OverlapPercent: 50
% WindowName: 'Hamming'
% SamplingFlag: 'symmetric'
% psd(Hs,,'Fs',Fs)
axnum = zeros(3,1);
for ax = 1:3, % dim x, y or z
axnum(ax) = figure ;
for i=1:n
subplot(prows, pcols,i)
psd(Hs,xyzCln{d}(:,i),'Fs',Fs);
% set(get(gca,'chi'),'colo','m'),
axis tight,
aa=axis;
ine (rem(f_in(i),Fs/2)*[1;1],aa(3:4),'color', 'r')
he=legend('PSD',['Noise freq=' num2str(f_in(i)) ' Hz'],0);
set(he,'fontsi',8, 'box', 'off');
end;
xlabel(['Frequency (Hz) Axis: ' xyzstr(ax)]);
end;
for ax = 1:3,
figure(axnum(ax))
if pcols>1,
set(gcf,'posi',[80 80 750 1000])
end
emarkpl( filenam)
end;
Hs.SegmentLength = len-s1+1; % 176
axnum = zeros(3,1);
for ax = 1:3 % dim x, y or z
% t_frqin = squeeze(txyz(s1:len,ax+1,:)); dimentions x freq.in
axnum(ax) = figure ;
for i=1:n
subplot(prows, pcols,i)
psd(Hs,xyzCln{d}(:,i),'Fs',Fs);
axis tight, aa=axis;
line (rem(f_in(i),Fs/2)*[1;1],aa(3:4),'color', 'r')
he=legend('PSD',['Noise freq=' num2str(f_in(i)) ' Hz']);
set(he,'fontsi',8, 'box', 'off');
end;
xlabel(['Frequency (Hz) Axis: ' xyzstr(ax)]);
end;
for ax = 1:3
figure(axnum(ax))
if pcols>1,
set(gcf,'posi',[80 80 750 1000])
end
emarkpl( filenam)
end;