-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
245 lines (210 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
from model import model
from random import random, choice, randint
from numpy import copy
import operator
# Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
#visualize
plt.scatter(X[:, 0], X[:, 1], c = y, s= 30)
plt.show()
#split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
#Scale the features
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# adding the column of ones in X for the bias term
X_train = np.concatenate((np.ones((X_train.shape[0], 1)), X_train), axis = 1)
X_test = np.concatenate((np.ones((X_test.shape[0], 1)), X_test), axis = 1)
# hyperparameters
nb_hdn_neurons = 8
nb_output_neurons = 1 #binary classification
input_size = 3 #including bias
W1_shape = (8, 3)
W2_shape = (1, 9)
initial_population_size = 50
# total parameters = 8*3 + 9*1 = 33
population = [] #the very first population
def initialize_population():
#convention: each chromosome will have dimensions 1x33
for i in range(initial_population_size):
W1 = np.random.randn(W1_shape[0], W1_shape[1])
W2 = np.random.randn(W2_shape[0], W2_shape[1])
population.append(np.concatenate((W1.flatten().reshape(1,W1_shape[0]*W1_shape[1] ), W2.flatten().reshape(1,W2_shape[0]*W2_shape[1] )),axis = 1))
def get_weights_from_encoded(individual):
W1 = individual[:, 0:W1_shape[0]*W1_shape[1]]
W2 = individual[:, W1_shape[0]*W1_shape[1]:]
return (W1.reshape(W1_shape[0], W1_shape[1]), W2.reshape(W2_shape[0], W2_shape[1]))
def generate_random_chromosome():
W1 = np.random.randn(W1_shape[0], W1_shape[1])
W2 = np.random.randn(W2_shape[0], W2_shape[1])
return np.concatenate((W1.flatten().reshape(1,W1_shape[0]*W1_shape[1] ), W2.flatten().reshape(1,W2_shape[0]*W2_shape[1] )),axis = 1)
def get_losses(population): #The rank function
losses = []
for individual in population:
mdl = model(get_weights_from_encoded(individual))
losses.append(mdl.loss(X_train, y_train))
zip1 = zip(losses,population)
sorted_results = sorted(zip1, key=operator.itemgetter(0))
sorted_pop = [x for _,x in sorted_results]
sorted_losses = [_ for _,x in sorted_results]
return sorted_pop, sorted_losses
def mutate(chromosome, prob):
if random() >= prob:
return chromosome, False # No mutation done
else:
#mutate each element with a probability of 'prob'
mutated = False
chromosome0 = copy(chromosome)
operators = ['add', 'subtract']
for i in range(len(chromosome0)):
if random() < prob:
if choice(operators) == 'add':
chromosome0[i] += random()
mutated = True
else:
chromosome0[i] -= random()
mutated = True
return chromosome0, mutated # mutated
def crossover(chromosomes, prob):
# here the argument chromosomes is a list containing two parent chromosomes
if random() >= prob:
return chromosomes, False # No crossover done
else:
#select a random position from the index, around which the values will be swapped
indx = randint(1, chromosomes[0].shape[1]-1)
p0 = copy(chromosomes[0]); p1 = copy(chromosomes[1])
med = copy(p0)
p0[:, 0:indx] = p1[:, 0:indx]
p1[:, 0:indx] = med[:, 0:indx]
return [p0, p1], True
def crossover2(chromosomes, prob):
# here the argument chromosomes is a list containing two parent chromosomes
#for every index along the length of both chromosomes, randomly select if it has to be swapped
p0 = copy(chromosomes[0]); p1 = copy(chromosomes[1])
crossovered = False
for i in range(chromosomes[0].shape[1]):
if random() < prob:
#swap the numbers at index i
p0[0, i] = chromosomes[1][0][i]
p1[0, i] = chromosomes[0][0][i]
crossovered = True
return [p0, p1], crossovered
def selectindex():
return randint(0, 10) #including the 11th element
def evolve(initial_population ,max_iter = 20,min_desired_loss = None, crossover_prob = 0.7, mutation_prob = 0.2, crossover2_prob = 0.2):
population = initial_population
for iteration in range(max_iter):
# create population,
# breed, mutate, and keep the 5 best to the next generation unchanged for next generation
print("Generation ", iteration)
newpop = []
sorted_pop, sorted_losses = get_losses(population)
print("loss = ",sorted_losses[0])
if min_desired_loss is not None:
if sorted_losses[0] <= min_desired_loss:
return sorted_losses[0], population[0]
# The top five always make it:
newpop.append(sorted_pop[0]); newpop.append( sorted_pop[1]);newpop.append( sorted_pop[2])
newpop.append( sorted_pop[3]);newpop.append( sorted_pop[4])
while len(newpop) < initial_population_size:
# select any from the top 10 of the population and randomly breed and mutate them
# First crossover:
idx1 = selectindex();idx2 = selectindex()
if idx1 != idx2:
children, crossovered = crossover([population[idx1],population[idx2]], prob = crossover_prob)
if crossovered and len(newpop) < initial_population_size-1:
newpop.extend(children)
# Mutation:
idx1 = selectindex()
child, mutated = mutate(population[idx1], prob = mutation_prob)
if mutated and len(newpop) < initial_population_size:
newpop.append(child)
# Crossover 2:
idx1 = selectindex();idx2 = selectindex()
if idx1 != idx2:
children, crossovered = crossover2([population[idx1],population[idx2]], prob = crossover2_prob)
if crossovered and len(newpop) < initial_population_size-1:
newpop.extend(children)
#add a random new chromosome by the probability of none of the above hapening
prob_none =1- ((crossover_prob*(1-mutation_prob)*(1-crossover2_prob) + (1-crossover_prob)*(mutation_prob)*(1-crossover2_prob)+(1-crossover_prob)*(1-mutation_prob)*(crossover2_prob))
+(crossover_prob*mutation_prob*(1-crossover2_prob) + (1-crossover_prob)*mutation_prob*crossover2_prob + crossover_prob*(1-mutation_prob)*crossover2_prob)
+crossover_prob*mutation_prob*crossover2_prob )
if random() < prob_none and len(newpop) < initial_population_size:
newpop.append(generate_random_chromosome())
population = list(np.copy(newpop))
sorted_pop, sorted_losses = get_losses(population)
return sorted_losses[0], sorted_pop[0]
initialize_population()
loss, weights = evolve(population ,max_iter = 1000,min_desired_loss = 0.2000, crossover_prob = 0.7, mutation_prob = 0.2, crossover2_prob = 0.2)
weights = get_weights_from_encoded(weights)
#Checking accuracy by plotting
model = model(weights)
#Training accuracy:
y_pred_train = model.forward_propagate(X_train)
for i in range(y_pred_train.shape[1]):
if y_pred_train[0][i] >= 0.5:
y_pred_train[0][i] = 1
else:
y_pred_train[0][i] = 0
y_pred_train = y_pred_train.reshape((320,))
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_train, y_pred_train)
accuracy_train = (cm[0][0]+cm[1][1])/np.sum(cm)
print("training accuracy = ",accuracy_train)
#Test accuracy:
y_pred_test = model.forward_propagate(X_test)
for i in range(y_pred_test.shape[1]):
if y_pred_test[0][i] >= 0.5:
y_pred_test[0][i] = 1
else:
y_pred_test[0][i] = 0
y_pred_test = y_pred_test.reshape((80,))
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_test)
accuracy_test = (cm[0][0]+cm[1][1])/np.sum(cm)
print("test accuracy = ",accuracy_test)
"""The training accuracy comes out to be 90.24 %.
The test accuracy is 91.25%.
So no overfitting here. """
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, model.forward_propagate(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Genetic Neural net(Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, model.forward_propagate(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Genetic Neural net(Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()