-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrnn_test.py
98 lines (81 loc) · 3.46 KB
/
rnn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import tensorflow as tf
import numpy as np
def _testDynamic():
time_steps = 8
num_units = 3
input_size = 5
batch_size = 2
input_values = np.random.randn(time_steps, batch_size, input_size)
sequence_length = np.random.randint(0, time_steps, size=batch_size)
with tf.Session(graph=tf.Graph()) as sess:
concat_inputs = tf.placeholder(
tf.float32,
shape=(time_steps, batch_size, input_size))
cell = tf.nn.rnn_cell.GRUCell(num_units=num_units)
with tf.variable_scope("dynamic_scope"):
outputs_dynamic, state_dynamic = tf.nn.dynamic_rnn(
cell,
inputs=concat_inputs,
sequence_length=sequence_length,
time_major=True,
dtype=tf.float32)
feeds = {concat_inputs: input_values}
# Initialize
tf.initialize_all_variables().run(feed_dict=feeds)
sess.run([outputs_dynamic, state_dynamic], feed_dict=feeds)
print("end of sess")
_testDynamic()
def testDynamicRNNWithTupleStates():
num_units = 3
input_size = 5
batch_size = 2
num_proj = 4
max_length = 8
sequence_length = [4, 6]
with tf.Session(graph=tf.Graph()) as sess:
initializer = tf.random_uniform_initializer(-0.01,
0.01,
seed=self._seed)
inputs = max_length * [
tf.placeholder(tf.float32,
shape=(None, input_size))
]
inputs_c = tf.pack(inputs)
cell = tf.nn.rnn_cell.LSTMCell(num_units,
use_peepholes=True,
num_proj=num_proj,
initializer=initializer,
state_is_tuple=True)
outputs_static, state_static = tf.nn.rnn(
cell,
inputs,
dtype=tf.float32,
sequence_length=sequence_length)
tf.get_variable_scope().reuse_variables()
outputs_dynamic, state_dynamic = tf.nn.dynamic_rnn(
cell,
inputs_c,
dtype=tf.float32,
time_major=True,
sequence_length=sequence_length)
self.assertTrue(isinstance(state_static,
tf.nn.rnn_cell.LSTMStateTuple))
self.assertTrue(isinstance(state_dynamic,
tf.nn.rnn_cell.LSTMStateTuple))
self.assertEqual(state_static[0], state_static.c)
self.assertEqual(state_static[1], state_static.h)
self.assertEqual(state_dynamic[0], state_dynamic.c)
self.assertEqual(state_dynamic[1], state_dynamic.h)
tf.initialize_all_variables().run()
input_value = np.random.randn(batch_size, input_size)
outputs_static_v = sess.run(outputs_static,
feed_dict={inputs[0]: input_value})
outputs_dynamic_v = sess.run(outputs_dynamic,
feed_dict={inputs[0]: input_value})
self.assertAllEqual(outputs_static_v, outputs_dynamic_v)
state_static_v = sess.run(state_static,
feed_dict={inputs[0]: input_value})
state_dynamic_v = sess.run(state_dynamic,
feed_dict={inputs[0]: input_value})
self.assertAllEqual(
np.hstack(state_static_v), np.hstack(state_dynamic_v))