-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathtrain_search_imagenet.py
256 lines (213 loc) · 10.1 KB
/
train_search_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import copy
from torch.autograd import Variable
from model_search_imagenet import Network
from architect import Architect
parser = argparse.ArgumentParser("imagenet")
parser.add_argument('--workers', type=int, default=4, help='number of workers to load dataset')
parser.add_argument('--data', type=str, default='/tmp/cache/', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.5, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=0.0, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--epochs', type=int, default=50, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='/tmp/checkpoints/', help='experiment name')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss')
parser.add_argument('--arch_learning_rate', type=float, default=6e-3, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
parser.add_argument('--begin', type=int, default=35, help='batch size')
parser.add_argument('--tmp_data_dir', type=str, default='/cache/', help='temp data dir')
parser.add_argument('--note', type=str, default='try', help='note for this run')
args = parser.parse_args()
args.save = '{}search-{}-{}'.format(args.save, args.note, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
data_dir = os.path.join(args.tmp_data_dir, 'imagenet_search')
#data preparation, we random sample 10% and 2.5% from training set(each class) as train and val, respectively.
#Note that the data sampling can not use torch.utils.data.sampler.SubsetRandomSampler as imagenet is too large
CLASSES = 1000
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
#torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
#logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
#dataset_dir = '/cache/'
#pre.split_dataset(dataset_dir)
#sys.exit(1)
# dataset prepare
traindir = data_dir = os.path.join(data_dir, 'train')
valdir = data_dir = os.path.join(data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
#dataset split
train_data1 = dset.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_data2 = dset.ImageFolder(valdir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
valid_data = dset.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
num_train = len(train_data1)
num_val = len(train_data2)
print('# images to train network: %d' % num_train)
print('# images to validate network: %d' % num_val)
model = Network(args.init_channels, CLASSES, args.layers, criterion)
model = torch.nn.DataParallel(model)
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
optimizer_a = torch.optim.Adam(model.module.arch_parameters(),
lr=args.arch_learning_rate, betas=(0.5, 0.999),
weight_decay=args.arch_weight_decay)
test_queue = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=args.workers)
train_queue = torch.utils.data.DataLoader(
train_data1, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=args.workers)
valid_queue = torch.utils.data.DataLoader(
train_data2, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=args.workers)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.epochs), eta_min=args.learning_rate_min)
#architect = Architect(model, args)
lr=args.learning_rate
for epoch in range(args.epochs):
scheduler.step()
current_lr = scheduler.get_lr()[0]
logging.info('Epoch: %d lr: %e', epoch, current_lr)
if epoch < 5 and args.batch_size > 256:
for param_group in optimizer.param_groups:
param_group['lr'] = lr * (epoch + 1) / 5.0
logging.info('Warming-up Epoch: %d, LR: %e', epoch, lr * (epoch + 1) / 5.0)
print(optimizer)
genotype = model.module.genotype()
logging.info('genotype = %s', genotype)
arch_param = model.module.arch_parameters()
logging.info(F.softmax(arch_param[0], dim=-1))
logging.info(F.softmax(arch_param[1], dim=-1))
# training
train_acc, train_obj = train(train_queue, valid_queue, model, optimizer, optimizer_a, criterion, lr,epoch)
logging.info('Train_acc %f', train_acc)
# validation
if epoch>= 47:
valid_acc, valid_obj = infer(valid_queue, model, criterion)
#test_acc, test_obj = infer(test_queue, model, criterion)
logging.info('Valid_acc %f', valid_acc)
#logging.info('Test_acc %f', test_acc)
#utils.save(model, os.path.join(args.save, 'weights.pt'))
def train(train_queue, valid_queue, model, optimizer, optimizer_a, criterion, lr,epoch):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
for step, (input, target) in enumerate(train_queue):
model.train()
n = input.size(0)
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# get a random minibatch from the search queue with replacement
try:
input_search, target_search = next(valid_queue_iter)
except:
valid_queue_iter = iter(valid_queue)
input_search, target_search = next(valid_queue_iter)
input_search = input_search.cuda(non_blocking=True)
target_search = target_search.cuda(non_blocking=True)
if epoch >=args.begin:
optimizer_a.zero_grad()
logits = model(input_search)
loss_a = criterion(logits, target_search)
loss_a.sum().backward()
nn.utils.clip_grad_norm_(model.module.arch_parameters(), args.grad_clip)
optimizer_a.step()
#architect.step(input, target, input_search, target_search, lr, optimizer, unrolled=args.unrolled)
optimizer.zero_grad()
logits = model(input)
loss = criterion(logits, target)
loss.backward()
nn.utils.clip_grad_norm_(model.module.parameters(), args.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
logging.info('TRAIN Step: %03d Objs: %e R1: %f R5: %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
with torch.no_grad():
logits = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
if __name__ == '__main__':
main()