forked from YuchiQiu/CLADE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncoding.py
130 lines (108 loc) · 9.34 KB
/
Encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import pandas as pd
import pickle
import os
import sys
from sklearn.preprocessing import StandardScaler
# This section of code is copied from ProFET (Ofer & Linial, DOI: 10.1093/bioinformatics/btv345)
# Original comment by the ProFET authors: 'Acquired from georgiev's paper of
# AAscales using helper script "GetTextData.py". + RegEx cleaning DOI: 10.1089/cmb.2008.0173'
gg_1 = {'Q': -2.54, 'L': 2.72, 'T': -0.65, 'C': 2.66, 'I': 3.1, 'G': 0.15, 'V': 2.64, 'K': -3.89, 'M': 1.89, 'F': 3.12, 'N': -2.02, 'R': -2.8, 'H': -0.39, 'E': -3.08, 'W': 1.89, 'A': 0.57, 'D': -2.46, 'Y': 0.79, 'S': -1.1, 'P': -0.58}
gg_2 = {'Q': 1.82, 'L': 1.88, 'T': -1.6, 'C': -1.52, 'I': 0.37, 'G': -3.49, 'V': 0.03, 'K': 1.47, 'M': 3.88, 'F': 0.68, 'N': -1.92, 'R': 0.31, 'H': 1, 'E': 3.45, 'W': -0.09, 'A': 3.37, 'D': -0.66, 'Y': -2.62, 'S': -2.05, 'P': -4.33}
gg_3 = {'Q': -0.82, 'L': 1.92, 'T': -1.39, 'C': -3.29, 'I': 0.26, 'G': -2.97, 'V': -0.67, 'K': 1.95, 'M': -1.57, 'F': 2.4, 'N': 0.04, 'R': 2.84, 'H': -0.63, 'E': 0.05, 'W': 4.21, 'A': -3.66, 'D': -0.57, 'Y': 4.11, 'S': -2.19, 'P': -0.02}
gg_4 = {'Q': -1.85, 'L': 5.33, 'T': 0.63, 'C': -3.77, 'I': 1.04, 'G': 2.06, 'V': 2.34, 'K': 1.17, 'M': -3.58, 'F': -0.35, 'N': -0.65, 'R': 0.25, 'H': -3.49, 'E': 0.62, 'W': -2.77, 'A': 2.34, 'D': 0.14, 'Y': -0.63, 'S': 1.36, 'P': -0.21}
gg_5 = {'Q': 0.09, 'L': 0.08, 'T': 1.35, 'C': 2.96, 'I': -0.05, 'G': 0.7, 'V': 0.64, 'K': 0.53, 'M': -2.55, 'F': -0.88, 'N': 1.61, 'R': 0.2, 'H': 0.05, 'E': -0.49, 'W': 0.72, 'A': -1.07, 'D': 0.75, 'Y': 1.89, 'S': 1.78, 'P': -8.31}
gg_6 = {'Q': 0.6, 'L': 0.09, 'T': -2.45, 'C': -2.23, 'I': -1.18, 'G': 7.47, 'V': -2.01, 'K': 0.1, 'M': 2.07, 'F': 1.62, 'N': 2.08, 'R': -0.37, 'H': 0.41, 'E': 0, 'W': 0.86, 'A': -0.4, 'D': 0.24, 'Y': -0.53, 'S': -3.36, 'P': -1.82}
gg_7 = {'Q': 0.25, 'L': 0.27, 'T': -0.65, 'C': 0.44, 'I': -0.21, 'G': 0.41, 'V': -0.33, 'K': 4.01, 'M': 0.84, 'F': -0.15, 'N': 0.4, 'R': 3.81, 'H': 1.61, 'E': -5.66, 'W': -1.07, 'A': 1.23, 'D': -5.15, 'Y': -1.3, 'S': 1.39, 'P': -0.12}
gg_8 = {'Q': 2.11, 'L': -4.06, 'T': 3.43, 'C': -3.49, 'I': 3.45, 'G': 1.62, 'V': 3.93, 'K': -0.01, 'M': 1.85, 'F': -0.41, 'N': -2.47, 'R': 0.98, 'H': -0.6, 'E': -0.11, 'W': -1.66, 'A': -2.32, 'D': -1.17, 'Y': 1.31, 'S': -1.21, 'P': -1.18}
gg_9 = {'Q': -1.92, 'L': 0.43, 'T': 0.34, 'C': 2.22, 'I': 0.86, 'G': -0.47, 'V': -0.21, 'K': -0.26, 'M': -2.05, 'F': 4.2, 'N': -0.07, 'R': 2.43, 'H': 3.55, 'E': 1.49, 'W': -5.87, 'A': -2.01, 'D': 0.73, 'Y': -0.56, 'S': -2.83, 'P': 0}
gg_10 = {'Q': -1.67, 'L': -1.2, 'T': 0.24, 'C': -3.78, 'I': 1.98, 'G': -2.9, 'V': 1.27, 'K': -1.66, 'M': 0.78, 'F': 0.73, 'N': 7.02, 'R': -0.99, 'H': 1.52, 'E': -2.26, 'W': -0.66, 'A': 1.31, 'D': 1.5, 'Y': -0.95, 'S': 0.39, 'P': -0.66}
gg_11 = {'Q': 0.7, 'L': 0.67, 'T': -0.53, 'C': 1.98, 'I': 0.89, 'G': -0.98, 'V': 0.43, 'K': 5.86, 'M': 1.53, 'F': -0.56, 'N': 1.32, 'R': -4.9, 'H': -2.28, 'E': -1.62, 'W': -2.49, 'A': -1.14, 'D': 1.51, 'Y': 1.91, 'S': -2.92, 'P': 0.64}
gg_12 = {'Q': -0.27, 'L': -0.29, 'T': 1.91, 'C': -0.43, 'I': -1.67, 'G': -0.62, 'V': -1.71, 'K': -0.06, 'M': 2.44, 'F': 3.54, 'N': -2.44, 'R': 2.09, 'H': -3.12, 'E': -3.97, 'W': -0.3, 'A': 0.19, 'D': 5.61, 'Y': -1.26, 'S': 1.27, 'P': -0.92}
gg_13 = {'Q': -0.99, 'L': -2.47, 'T': 2.66, 'C': -1.03, 'I': -1.02, 'G': -0.11, 'V': -2.93, 'K': 1.38, 'M': -0.26, 'F': 5.25, 'N': 0.37, 'R': -3.08, 'H': -1.45, 'E': 2.3, 'W': -0.5, 'A': 1.66, 'D': -3.85, 'Y': 1.57, 'S': 2.86, 'P': -0.37}
gg_14 = {'Q': -1.56, 'L': -4.79, 'T': -3.07, 'C': 0.93, 'I': -1.21, 'G': 0.15, 'V': 4.22, 'K': 1.78, 'M': -3.09, 'F': 1.73, 'N': -0.89, 'R': 0.82, 'H': -0.77, 'E': -0.06, 'W': 1.64, 'A': 4.39, 'D': 1.28, 'Y': 0.2, 'S': -1.88, 'P': 0.17}
gg_15 = {'Q': 6.22, 'L': 0.8, 'T': 0.2, 'C': 1.43, 'I': -1.78, 'G': -0.53, 'V': 1.06, 'K': -2.71, 'M': -1.39, 'F': 2.14, 'N': 3.13, 'R': 1.32, 'H': -4.18, 'E': -0.35, 'W': -0.72, 'A': 0.18, 'D': -1.98, 'Y': -0.76, 'S': -2.42, 'P': 0.36}
gg_16 = {'Q': -0.18, 'L': -1.43, 'T': -2.2, 'C': 1.45, 'I': 5.71, 'G': 0.35, 'V': -1.31, 'K': 1.62, 'M': -1.02, 'F': 1.1, 'N': 0.79, 'R': 0.69, 'H': -2.91, 'E': 1.51, 'W': 1.75, 'A': -2.6, 'D': 0.05, 'Y': -5.19, 'S': 1.75, 'P': 0.08}
gg_17 = {'Q': 2.72, 'L': 0.63, 'T': 3.73, 'C': -1.15, 'I': 1.54, 'G': 0.3, 'V': -1.97, 'K': 0.96, 'M': -4.32, 'F': 0.68, 'N': -1.54, 'R': -2.62, 'H': 3.37, 'E': -2.29, 'W': 2.73, 'A': 1.49, 'D': 0.9, 'Y': -2.56, 'S': -2.77, 'P': 0.16}
gg_18 = {'Q': 4.35, 'L': -0.24, 'T': -5.46, 'C': -1.64, 'I': 2.11, 'G': 0.32, 'V': -1.21, 'K': -1.09, 'M': -1.34, 'F': 1.46, 'N': -1.71, 'R': -1.49, 'H': 1.87, 'E': -1.47, 'W': -2.2, 'A': 0.46, 'D': 1.38, 'Y': 2.87, 'S': 3.36, 'P': -0.34}
gg_19 = {'Q': 0.92, 'L': 1.01, 'T': -0.73, 'C': -1.05, 'I': -4.18, 'G': 0.05, 'V': 4.77, 'K': 1.36, 'M': 0.09, 'F': 2.33, 'N': -0.25, 'R': -2.57, 'H': 2.17, 'E': 0.15, 'W': 0.9, 'A': -4.22, 'D': -0.03, 'Y': -3.43, 'S': 2.67, 'P': 0.04}
# Package all georgiev parameters
georgiev_parameters = [gg_1, gg_2, gg_3, gg_4, gg_5, gg_6, gg_7, gg_8, gg_9,
gg_10, gg_11, gg_12, gg_13, gg_14, gg_15, gg_16, gg_17,
gg_18, gg_19]
########################
########################
def feature_single(variant,encoding):
# four physicochemical descriptors for AA
Feature = []
if encoding=='AA':
AAvolume = {'A':88.6, 'R':173.4, 'D':111.1, 'N':114.1, 'C':108.5, 'E':138.4, 'Q':143.8, 'G':60.1, 'H':153.2, 'I':166.7, 'L':166.7, 'K':168.6, 'M':162.9, 'F':189.9, 'P':112.7, 'S':89., 'T':116.1, 'W':227.8, 'Y':193.6, 'V':140. }
AAhydropathy = {'A':1.8, 'R':-4.5, 'N':-3.5, 'D': -3.5, 'C': 2.5, 'E':-3.5, 'Q':-3.5, 'G':-0.4, 'H':-3.2, 'I':4.5, 'L':3.8, 'K':-3.9, 'M':1.9, 'F':2.8, 'P':-1.6, 'S':-0.8, 'T':-0.7, 'W':-0.9, 'Y':-1.3, 'V':4.2}
AAarea = {'A':115.,'R':225.,'D':150.,'N':160.,'C':135.,'E':190.,'Q':180.,'G':75.,'H':195.,'I':175.,'L':170.,'K':200.,'M':185.,'F':210.,'P':145.,'S':115.,'T':140.,'W':255.,'Y':230.,'V':155.}
AAweight = {'A':89.094,'R':174.203,'N':132.119,'D':133.104,'C':121.154,'E':147.131,'Q':146.146,'G':75.067,'H':155.156,'I':131.175,'L':131.175,'K':146.189,'M':149.208,'F':165.192,'P':115.132,'S':105.093,'T':119.12,'W':204.228,'Y':181.191,'V':117.148}
for AA in variant:
Feature.append([AAvolume[AA],AAhydropathy[AA],AAarea[AA],AAweight[AA]])
Feature=np.asarray(Feature)
elif encoding=='Georgiev':
Feature=[[georgiev_param[character] for georgiev_param
in georgiev_parameters] for character in variant]
Feature=np.asarray(Feature)
elif encoding == 'onehot':
aalist=list(gg_1.keys())
for AA in variant:
Feature.append([AA==aa for aa in aalist])
Feature=np.asarray(Feature).astype(float)
return Feature
def RunEncoding(input_dir,Variants,encoding):
Feature=[]
for i in range(len(Variants)):
variant=Variants[i]
feature=feature_single(variant,encoding)
Feature.append(feature)
Feature=np.asarray(Feature)
# normalize data
if encoding =='onehot':
Feature_normalized=Feature
else:
Feature_normalized =np.zeros(Feature.shape)
for i in range(Feature.shape[1]):
for j in range(Feature.shape[2]):
scalers= StandardScaler()
tmp=Feature[:, i, j].reshape(-1,1)
if tmp.max()==1.0 and tmp.min()==0.0:
Feature_normalized[:,i,j] = tmp.reshape(len(tmp))
else:
tmp2=scalers.fit_transform(tmp)
Feature_normalized[:, i, j] = tmp2.reshape(len(tmp2))
# create ComboToIndex file
ComboToIndex ={Variants[i]:i for i in range(len(Variants))}
return Feature,Feature_normalized,ComboToIndex
def saveEncoding(input_dir,save_dir,dataset,encoding):
data=pd.read_excel(os.path.join(input_dir,dataset+'.xlsx'))
Variants = data['Variants'].values
Feature,Feature_normalized,ComboToIndex = RunEncoding(input_dir, Variants, encoding)
np.save(os.path.join(save_dir, dataset+'_'+encoding+ '.npy'), Feature)
np.save(os.path.join(save_dir, dataset+'_'+encoding + '_normalized.npy'), Feature_normalized)
with open(os.path.join(save_dir, 'ComboToIndex' + '_'+dataset +'_'+ encoding+ '.pkl'), 'wb') as f:
pickle.dump(ComboToIndex, f)
##########################################################################################
##########################################################################################
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', help="Directory for Output Encoding Files. Default value is 'Input/' which store all input files for CLADE", default='Input/')
parser.add_argument("--dataset", help = "Name of the data set. Options: 1. GB1; 2. PhoQ. It will load file DATASET.xlsx", default = 'GB1')
parser.add_argument("--encoding", help = "Name of the encoding method; Options: 1. AA; 2. Georgiev. Default: AA",default='AA')
parser.add_argument('--input_dir',help="Directory for Input Files (directory for xlsx files for combinatorial library). Default: Input",default='Input/')
args = parser.parse_args()
save_dir = args.save_dir
dataset = args.dataset
encoding = args.encoding
input_dir = args.input_dir
if len(save_dir)==0:
from time import strftime
time = strftime("%Y%m%d-%H%M%S")
save_dir = time + '/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
saveEncoding(input_dir,save_dir, dataset, encoding)