forked from YuchiQiu/CLADE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering_sampling.py
392 lines (316 loc) · 17.1 KB
/
clustering_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import numpy as np
import os
import sys
import pandas as pd
from sklearn.cluster import KMeans
import warnings
import pickle
import copy
from sklearn.gaussian_process import GaussianProcessRegressor
def sampling_subcluster_priority(seed,acquisition,sampling_para,features,Fitness,SEQ_index,Index):
if acquisition in ['UCB', 'epsilon','Thompson']:
X_GP=[]
Y_GP=[]
for cluster_id in range(len(Index)):
X_GP.extend(features[SEQ_index[cluster_id]])
Y_GP.extend(Fitness[SEQ_index[cluster_id]])
X_GP=np.asarray(X_GP)
Y_GP=np.asarray(Y_GP)
# print(X_GP.shape)
# print(Y_GP.shape)
regr = GaussianProcessRegressor(random_state=seed)
regr.fit(X_GP, Y_GP)
for cluster_id in range(len(Index)):
if len(SEQ_index[cluster_id])>0 and len(Index[cluster_id]):
if acquisition in ['UCB', 'epsilon','Thompson']:
# X_GP = features[SEQ_index[cluster_id]]
# Y_GP = Fitness[SEQ_index[cluster_id]]
# regr = GaussianProcessRegressor(random_state=seed)
# regr.fit(X_GP, Y_GP)
pred_mean, pred_std = regr.predict(features[Index[cluster_id]], return_std=True)
if acquisition == 'UCB':
# beta = 4 followed by Romero, Philip et al., PNAS 2013
index_GP = np.argsort(pred_mean + pred_std * np.sqrt(sampling_para))[::-1]
elif acquisition == 'epsilon':
p_GP = np.random.rand()
if p_GP < sampling_para:
# exploration
index_GP = np.argsort(pred_std)[::-1]
else:
# exploitation
index_GP = np.argsort(pred_mean)[::-1]
elif acquisition =='Thompson':
samples_TS = np.random.normal(0,1,pred_mean.shape)
samples_TS = pred_mean + pred_std * samples_TS
index_GP = np.argsort(samples_TS)[::-1]
Index[cluster_id]=Index[cluster_id][index_GP]
elif acquisition == 'random':
np.random.shuffle(Index[cluster_id])
return Index
def shuffle_index(Index):
for i in range(len(Index)):
np.random.shuffle(Index[i])
return Index
def run_Clustering( features, n_clusters, subclustering_index=np.zeros([0])):
if len(subclustering_index) > 0:
features_sub = features[subclustering_index, :]
else:
features_sub=features
kmeans = KMeans(n_clusters=n_clusters).fit(features_sub)
cluster_labels = kmeans.labels_
Length = []
Index = []
if len(subclustering_index) > 0:
for i in range(cluster_labels.max() + 1):
index = subclustering_index[np.where(cluster_labels == i)[0]]
l = len(index)
Index.append(index)
Length.append(l)
else:
for i in range(cluster_labels.max() + 1):
index = np.where(cluster_labels == i)[0]
l = len(index)
Index.append(index)
Length.append(l)
return Index
def split_subcluster(features, n_clusters, Index, Fitness, AACombo, SEQ_index, cluster_id):
subclustering_index = []
subclustering_index.extend(Index[cluster_id])
subclustering_index.extend(SEQ_index[cluster_id])
subclustering_index=np.asarray(subclustering_index)
Index2 = run_Clustering( features, n_clusters, subclustering_index)
Fit_sub = [[] for _ in range(n_clusters)]
SEQ_sub = [[] for _ in range(n_clusters)]
SEQ_index_sub = [[] for _ in range(n_clusters)]
Index_sub=copy.deepcopy(Index2)
for k in SEQ_index[cluster_id]:
for i in range(len(Index2)):
if k in Index2[i]:
Fit_sub[i].append(Fitness[k])
SEQ_sub[i].append(AACombo[k])
SEQ_index_sub[i].append(k)
Index_sub[i]=np.delete(Index_sub[i],np.where(Index_sub[i]==k))
return Fit_sub, SEQ_sub, SEQ_index_sub, Index_sub
def sample_min_cluster(min_num_cluster, Fitness, AACombo, Index, Fit, SEQ, SEQ_index):
num_add = 0
for i in range(len(Index)):
if len(Fit[i]) < min_num_cluster:
for k in range(min_num_cluster - len(Fit[i])):
Fit[i].append(Fitness[Index[i][k]])
SEQ[i].append(AACombo[Index[i][k]])
SEQ_index[i].append(Index[i][k])
num_add += 1
Index[i] = np.delete(Index[i], list(range(0, min_num_cluster - len(Fit[i]))))
return Index, Fit, SEQ, SEQ_index, num_add
def length_index(SEQ_index):
k=0
for i in range(len(SEQ_index)):
k+=len(SEQ_index[i])
return k
def cluster_sample(args,save_dir,features,AACombo, Fitness,ComboToIndex):
K_increments = args.K_increments
for i in range(len(K_increments)):
K_increments[i]=int(K_increments[i])
N_hierarchy=len(K_increments)
encoding = args.encoding
dataset=args.dataset
num_first_round=int(args.num_first_round)
batch_size=int(args.batch_size)
hierarchy_batch=int(args.hierarchy_batch)
num_batch=int(args.num_batch)
num_training_data = batch_size*num_batch
input_path=args.input_path
seed=args.seed
acquisition=args.acquisition
sampling_para=args.sampling_para
# new hierarchy needs to be generated when number of samples is included in the array
new_hierarchy = np.arange(1,N_hierarchy)*hierarchy_batch+num_first_round
hierarchy = 0
n_clusters=K_increments[hierarchy]
total_clusters = n_clusters
Index = run_Clustering(features, n_clusters)
Index = shuffle_index(Index)
# store selected samples with sequential order
Fit_list = []
SEQ_list = []
Cluster_list=[]
# store selected samples according to the cluster they belong to
Fit = [[] for _ in range(len(Index))]
SEQ = [[] for _ in range(len(Index))]
SEQ_index = [[] for _ in range(len(Index))]
num = 0
Prob = np.ones([n_clusters]) / n_clusters
while num < num_first_round:
cluster_id = np.random.choice(np.arange(0, total_clusters), p=Prob)
while len(Index[cluster_id]) == 0:
Prob[cluster_id] = 0
Prob = Prob / np.sum(Prob)
cluster_id = np.random.choice(np.arange(0, total_clusters), p=Prob)
Fit[cluster_id].append(Fitness[Index[cluster_id][0]])
SEQ[cluster_id].append(AACombo[Index[cluster_id][0]])
Fit_list.append(Fitness[Index[cluster_id][0]])
SEQ_list.append(AACombo[Index[cluster_id][0]])
SEQ_index[cluster_id].append(Index[cluster_id][0])
Index[cluster_id] = np.delete(Index[cluster_id], [0])
num += 1
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
Mean_Fit = np.asarray([np.asarray(Fit[i]).mean() for i in range(len(Index))])
Mean_Fit[np.where(np.isnan(Mean_Fit))[0]] = 0
Prob = Mean_Fit / np.sum(Mean_Fit)
## use tree structure to store hirearchy
sample_length = np.zeros([len(Index)])
for cluster_id in range(len(Index)):
sample_length[cluster_id] = len(SEQ[cluster_id])
tree = [[]]
parents = [-1 * np.ones(len(Index))]
tree[hierarchy] = {'parents': copy.deepcopy(parents[hierarchy]), 'mean': copy.deepcopy(np.asarray(Mean_Fit)),
'num_samples': copy.deepcopy(np.asarray(sample_length)), 'Index': copy.deepcopy(Index),
'SEQ_index': copy.deepcopy(SEQ_index)}
# use GP-UCB or GP-epsilon greedy search or random sampling
# to get sampling priority for sequences in each non-empty cluster
Index = sampling_subcluster_priority(seed, acquisition, sampling_para, features, Fitness, SEQ_index, Index)
while num < num_training_data:
cluster_id = np.random.choice(np.arange(0, total_clusters), p=Prob)
# if all sequences in a cluster have been selected,
# we need to update the sampling probablity by setting the Prob in this cluster to be zero.
while len(Index[cluster_id]) == 0:
Prob[cluster_id] = 0
Prob = Prob / np.sum(Prob)
cluster_id = np.random.choice(np.arange(0, total_clusters), p=Prob)
Fit[cluster_id].append(Fitness[Index[cluster_id][0]])
SEQ[cluster_id].append(AACombo[Index[cluster_id][0]])
Fit_list.append(Fitness[Index[cluster_id][0]])
SEQ_list.append(AACombo[Index[cluster_id][0]])
SEQ_index[cluster_id].append(Index[cluster_id][0])
Index[cluster_id] = np.delete(Index[cluster_id], [0])
sample_length[cluster_id] = len(SEQ[cluster_id])
num += 1
# update sampling probabilities and update sampling priority
if np.mod(num, batch_size) == 0:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
Mean_Fit = np.asarray([np.asarray(Fit[i]).mean() for i in range(total_clusters)])
Mean_Fit[np.where(np.isnan(Mean_Fit))[0]] = 0
Prob = Mean_Fit / np.sum(Mean_Fit)
# use GP-UCB or GP-epsilon greedy search or random sampling
# to get sampling priority for sequences in each non-empty cluster
Index = sampling_subcluster_priority(seed, acquisition, sampling_para, features, Fitness, SEQ_index, Index)
tree[hierarchy]['num_samples'] = copy.deepcopy(np.asarray(sample_length))
tree[hierarchy]['mean'] = copy.deepcopy(np.asarray(Mean_Fit))
tree[hierarchy]['Index'] = copy.deepcopy(Index)
tree[hierarchy]['SEQ_index']=copy.deepcopy(SEQ_index)
# generate new hierarchy
if num in new_hierarchy:
hierarchy+=1
n_clusters_subclustering=K_increments[hierarchy]
num_new_cluster = np.floor(Prob * n_clusters_subclustering)
cluster_id = np.where(Mean_Fit == Mean_Fit.max())[0][0]
num_new_cluster[cluster_id] = num_new_cluster[cluster_id] + n_clusters_subclustering - num_new_cluster.sum()
parents.append(-1 * np.ones([total_clusters]))
tree.append([])
for cluster_id in range(total_clusters):
if num_new_cluster[cluster_id] >= 1:
Fit_sub, SEQ_sub, SEQ_index_sub, Index_sub = \
split_subcluster( features, int(num_new_cluster[cluster_id]) + 1, Index, Fitness,
AACombo, SEQ_index, cluster_id)
# print(str(cluster_id)+' '+ str(len(Fit_sub)) +' ' +str(int(num_new_cluster[cluster_id])))
Fit[cluster_id] = Fit_sub[0]
SEQ[cluster_id] = SEQ_sub[0]
SEQ_index[cluster_id] = SEQ_index_sub[0]
Index[cluster_id] = Index_sub[0]
for k in range(1, len(Fit_sub)):
Fit.append(Fit_sub[k])
SEQ.append(SEQ_sub[k])
SEQ_index.append(SEQ_index_sub[k])
Index.append(Index_sub[k])
parents[hierarchy][cluster_id] = cluster_id
parents[hierarchy] = np.append(parents[hierarchy], cluster_id * np.ones([len(Fit_sub) - 1]))
total_clusters = n_clusters_subclustering + total_clusters
## update tree structure and randomly shuffle Index;
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
Mean_Fit = np.asarray([np.asarray(Fit[i]).mean() for i in range(total_clusters)])
Mean_Fit[np.where(np.isnan(Mean_Fit))[0]] = 0
Prob = Mean_Fit / np.sum(Mean_Fit)
Index = shuffle_index(Index)
sample_length = np.zeros([len(Index)])
for cluster_id in range(len(Index)):
sample_length[cluster_id] = len(SEQ[cluster_id])
tree[hierarchy] = {'parents': copy.deepcopy(parents[hierarchy]), 'mean': copy.deepcopy(np.asarray(Mean_Fit)),
'num_samples': copy.deepcopy(np.asarray(sample_length)), 'Index': copy.deepcopy(Index),
'SEQ_index': copy.deepcopy(SEQ_index)}
Fit_list = np.asarray(Fit_list)
SEQ_list = np.asarray(SEQ_list)
for seq in SEQ_list:
for cluster_id in range(len(SEQ_index)):
if ComboToIndex.get(seq) in SEQ_index[cluster_id]:
Cluster_list.append(cluster_id)
Cluster_list=np.asarray(Cluster_list)
sub_data = pd.DataFrame({'AACombo': SEQ_list, 'Fitness': Fit_list,'Cluster': Cluster_list})
trainingdata=os.path.join(save_dir , 'InputValidationData.csv')
sub_data.to_csv(trainingdata, index=False)
np.savez(os.path.join(save_dir, 'clustering.npz'), tree=tree)
return trainingdata
def main_sampling(seed,args,save_dir):
np.random.seed(seed)
if not os.path.exists(save_dir):
os.system('mkdir -p '+save_dir)
groundtruth_file=os.path.join(args.input_path, args.dataset+ '.xlsx')
groundtruth = pd.read_excel(groundtruth_file)
Fitness = groundtruth['Fitness'].values
fit_max=Fitness.max()
# Fitness = Fitness / Fitness.max()
if args.use_zeroshot:
AACombo,FIT_zeroshot = library_zeroshot(args.input_path, save_dir, args.dataset, args.zeroshot, args.N_zeroshot)
from Encoding import RunEncoding
tmp, features, ComboToIndex = RunEncoding(args.input_path,AACombo,args.encoding)
print(features.shape)
Fitness=FIT_zeroshot/fit_max
else:
# get feature matrix
encoding_lib = os.path.join(args.input_path, args.dataset+'_'+args.encoding + '_normalized.npy')
features = np.load(encoding_lib)
ComboToIndex=pickle.load(open(os.path.join(args.input_path, 'ComboToIndex'+ '_'+args.dataset +'_'+ args.encoding+'.pkl'),'rb'))
Fitness = Fitness / Fitness.max()
AACombo = groundtruth['Variants'].values
if len(features.shape) == 3:
features = np.reshape(features, [features.shape[0], features.shape[1] * features.shape[2]])
features = features[0:len(Fitness)]
trainingdata=cluster_sample(args,save_dir,features,AACombo, Fitness,ComboToIndex)
return trainingdata
def library_zeroshot(input_path,save_dir,dataset,zeroshot,N_zeroshot):
data_landscape = pd.read_excel(os.path.join(input_path,dataset+'.xlsx'))
SEQ = data_landscape['Variants'].values
Fitness=data_landscape['Fitness'].values
# Fitness=Fitness/max(Fitness)
data_zeroshot = pd.read_csv(os.path.join(input_path,dataset+'_zeroshot.csv'))
data_zeroshot = data_zeroshot.sort_values(by=zeroshot, ascending=False)
top_Combo = data_zeroshot['Combo'].values[0:N_zeroshot]
SEQ_zeroshot = [SEQ[i] for i in range(len(SEQ)) if SEQ[i] in top_Combo]
FIT_zeroshot = [Fitness[i] for i in range(len(SEQ)) if SEQ[i] in top_Combo]
return SEQ_zeroshot,FIT_zeroshot
if __name__ == "__main__":
import argparse
from time import strftime
time = strftime("%Y%m%d-%H%M%S")
parser = argparse.ArgumentParser()
parser.add_argument("K_increments", nargs="+", help = "Increments of clusters at each hierarchy; Input a list; For example: --K_increments 30 30 30.")
parser.add_argument("--dataset", help = "Name of the data set. Options: 1. GB1; 2. PhoQ.", default = 'GB1')
parser.add_argument("--encoding", help = "encoding method; Option: 1. AA; 2. Georgiev. Default: AA", default = 'AA')
parser.add_argument("--num_first_round", help = "number of variants in the first round sampling; Default: 96",type=int,default=96)
parser.add_argument("--batch_size", help = "Batch size. Number of variants can be screened in parallel. Default: 96",type=int,default = 96)
parser.add_argument("--hierarchy_batch", help = "Excluding the first-round sampling, new hierarchy is generated after every hierarchy_batch variants are collected, until max hierarchy. Default: 96",default = 96)
parser.add_argument("--num_batch", help="number of batches; Default: 4",type=int,default=4)
parser.add_argument('--input_path',help="Input Files Directory. Default 'Input/'",default='Input/')
parser.add_argument('--save_dir', help="Output Files Directory; Default: current time", default= time + '/')
parser.add_argument('--seed', help="random seed",type=int, default= 100)
parser.add_argument('--acquisition',help="Acquisition function used for in-cluster sampling; default UCB. Options: 1. UCB; 2. epsilon; 3. Thompson; 4. random. Default: random",default='random')
parser.add_argument('--sampling_para', help="Float parameter for the acquisition function. 1. beta for GP-UCB; 2. epsilon for epsilon greedy; 3&4. redundant for Thompson and random sampling. Default: 4.0",type=float, default= 4.0)
parser.add_argument('--use_zeroshot',help="Whether to employ zeroshot predictor in sampling. Default: FALSE",type=bool, default=False)
parser.add_argument('--zeroshot',help="name of zeroshot predictor; Required a CSV file stored in directory $INPUT_PATH with name: $DATA_SET_zeroshot.csv. Default: EvMutation",default='EvMutation')
parser.add_argument('--N_zeroshot',help="Number of top ranked variants from zeroshot predictor used for the recombined library. Default: 1600",type=int,default=1600)
args = parser.parse_args()
# random seed for reproduction
seed=args.seed
main_sampling(seed,args,args.save_dir)