-
Notifications
You must be signed in to change notification settings - Fork 11
/
mm-vet_evaluator.py
408 lines (362 loc) · 14.9 KB
/
mm-vet_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# in case you want to run this script independently
import argparse
from openai import OpenAI
from openai._exceptions import RateLimitError
import json
import os
from tqdm import tqdm
import pandas as pd
import numpy as np
from collections import Counter
import time
import pathlib
prompt = """Compare the ground truth and prediction from AI models, to give a correctness score for the prediction. <AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when any one element in the ground truth is present in the prediction. The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last space of the correctness score.
Question | Ground truth | Prediction | Correctness
--- | --- | --- | ---
What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0
What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5
What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5
What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5
What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0
Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite their names, Iceland is not very icy and Greenland isn't very green. | 0.4
Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature of Iceland's and Greenland's names. Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text 'This is why I have trust issues' is a playful way to suggest that these contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0
"""
def arg_parser(prompt=prompt):
parser = argparse.ArgumentParser()
parser.add_argument(
"--mmvet_path",
type=str,
default="/path/to/mm-vet",
help="Download mm-vet.zip and `unzip mm-vet.zip` and change the path here",
)
parser.add_argument(
"--result_file",
type=str,
default="results/llava_llama2_13b_chat.json",
help="path to the model result file, must end with .json",
)
parser.add_argument(
"--result_path",
type=str,
default="results",
help="path to save the grading results",
)
parser.add_argument(
"--openai_api_key", type=str, default=None,
help="If not specified, use OPENAI_API_KEY environment variable."
)
parser.add_argument(
"--gpt_model", type=str, default="gpt-4-0613", help="gpt model name"
)
parser.add_argument(
"--prompt", type=str, default=prompt, help="prompt for the model"
)
parser.add_argument(
"--use_sub_set",
action="store_true",
help="use a subset of the data for debugging",
)
parser.add_argument(
"--decimal_places",
type=int,
default=1,
help="number of decimal places to round to",
)
parser.add_argument(
"--num_run",
type=int,
default=1,
help="we set it as 5 in the paper",
)
args = parser.parse_args()
return args
def get_file_names(args, model, sub_set_name):
# grade results for each sample to svae
grade_file = f"{model}_{args.gpt_model}-grade-{args.num_run}runs.json"
grade_file = os.path.join(args.result_path, grade_file)
# score results regarding capabilities/capability integration to save
cap_score_file = (
f"{model}_{sub_set_name}{args.gpt_model}-cap-score-{args.num_run}runs.csv"
)
cap_score_file = os.path.join(args.result_path, cap_score_file)
cap_int_score_file = f"{model}_{sub_set_name}{args.gpt_model}-cap-int-score-{args.num_run}runs.csv"
cap_int_score_file = os.path.join(args.result_path, cap_int_score_file)
return grade_file, cap_score_file, cap_int_score_file
def load_metadata(args):
if args.use_sub_set:
bard_set_file = os.path.join(args.mmvet_path, "bard_set.json")
with open(bard_set_file, "r") as f:
sub_set = json.load(f)
sub_set_name = "bardset"
sub_set_name = sub_set_name + "_"
else:
sub_set = None
sub_set_name = ""
mmvet_metadata = os.path.join(args.mmvet_path, "mm-vet.json")
with open(mmvet_metadata, "r") as f:
data = json.load(f)
counter = Counter()
cap_set_list = []
cap_set_counter = []
len_data = 0
for id, value in data.items():
if sub_set is not None and id not in sub_set:
continue
cap = value["capability"]
cap = set(cap)
counter.update(cap)
if cap not in cap_set_list:
cap_set_list.append(cap)
cap_set_counter.append(1)
else:
cap_set_counter[cap_set_list.index(cap)] += 1
len_data += 1
sorted_list = counter.most_common()
columns = [k for k, v in sorted_list]
columns.append("total")
columns.append("std")
columns.append("runs")
df = pd.DataFrame(columns=columns)
cap_set_sorted_indices = np.argsort(-np.array(cap_set_counter))
new_cap_set_list = []
new_cap_set_counter = []
for index in cap_set_sorted_indices:
new_cap_set_list.append(cap_set_list[index])
new_cap_set_counter.append(cap_set_counter[index])
cap_set_list = new_cap_set_list
cap_set_counter = new_cap_set_counter
cap_set_names = ["_".join(list(cap_set)) for cap_set in cap_set_list]
columns2 = cap_set_names
columns2.append("total")
columns2.append("std")
columns2.append("runs")
df2 = pd.DataFrame(columns=columns2)
return (
sub_set,
sub_set_name,
data,
counter,
cap_set_list,
cap_set_counter,
len_data,
df,
df2,
cap_set_names,
)
def runs(
args,
grade_file,
data,
len_data,
sub_set=None,
):
with open(args.result_file) as f:
results = json.load(f)
if os.path.exists(grade_file):
with open(grade_file, "r") as f:
grade_results = json.load(f)
else:
grade_results = {}
def need_more_runs(args, grade_results, len_data):
need_more_runs = False
if len(grade_results) > 0:
for k, v in grade_results.items():
if len(v["score"]) < args.num_run:
need_more_runs = True
break
return need_more_runs or len(grade_results) < len_data
while need_more_runs(args, grade_results, len_data):
for j in range(args.num_run):
print(f"eval run {j}")
for id, line in tqdm(data.items()):
if sub_set is not None and id not in sub_set:
continue
if id in grade_results and len(grade_results[id]["score"]) >= (j + 1):
continue
model_pred = results[id]
question = (
args.prompt
+ "\n"
+ " | ".join(
[
line["question"],
line["answer"]
.replace("<AND>", " <AND> ")
.replace("<OR>", " <OR> "),
model_pred,
"",
]
)
)
messages = [
{"role": "user", "content": question},
]
if id not in grade_results:
sample_grade = {"model": [], "content": [], "score": []}
else:
sample_grade = grade_results[id]
grade_sample_run_complete = False
temperature = 0.0
while not grade_sample_run_complete:
try:
response = client.chat.completions.create(
model=args.gpt_model,
max_tokens=3,
temperature=temperature,
messages=messages,
)
content = response.choices[0].message.content
flag = True
try_time = 1
while flag:
try:
content = content.split(" ")[0].strip()
score = float(content)
if score > 1.0 or score < 0.0:
assert False
flag = False
except:
question = (
args.prompt
+ "\n"
+ " | ".join(
[
line["question"],
line["answer"]
.replace("<AND>", " <AND> ")
.replace("<OR>", " <OR> "),
model_pred,
"",
]
)
+ "\nPredict the correctness of the answer (digit): "
)
messages = [
{"role": "user", "content": question},
]
response = client.chat.completions.create(
model=args.gpt_model,
max_tokens=3,
temperature=temperature,
messages=messages,
)
content = response.choices[0].message.content
try_time += 1
temperature += 0.5
print(f"{id} try {try_time} times")
print(content)
if try_time > 5:
score = 0.0
flag = False
grade_sample_run_complete = True
except RateLimitError as e:
# gpt4 may have token rate limit
print("sleep 30s")
time.sleep(30)
if len(sample_grade["model"]) >= j + 1:
sample_grade["model"][j] = response.model
sample_grade["content"][j] = content
sample_grade["score"][j] = score
else:
sample_grade["model"].append(response.model)
sample_grade["content"].append(content)
sample_grade["score"].append(score)
grade_results[id] = sample_grade
with open(grade_file, "w") as f:
json.dump(grade_results, f, indent=4)
return grade_results
def export_result(args, model, df, df2, grade_results, data, cap_set_counter, cap_set_names):
columns = df.columns
columns2 = df2.columns
cap_socres = {k: [0.0] * args.num_run for k in columns[:-2]}
counter["total"] = len_data
cap_socres2 = {k: [0.0] * args.num_run for k in columns2[:-2]}
counter2 = {columns2[i]: cap_set_counter[i] for i in range(len(cap_set_counter))}
counter2["total"] = len_data
for k, v in grade_results.items():
if sub_set is not None and k not in sub_set:
continue
for i in range(args.num_run):
score = v["score"][i]
caps = set(data[k]["capability"])
for c in caps:
cap_socres[c][i] += score
cap_socres["total"][i] += score
index = cap_set_list.index(caps)
cap_socres2[cap_set_names[index]][i] += score
cap_socres2["total"][i] += score
for k, v in cap_socres.items():
cap_socres[k] = np.array(v) / counter[k] * 100
std = round(cap_socres["total"].std(), args.decimal_places)
total_copy = cap_socres["total"].copy()
runs = str(list(np.round(total_copy, args.decimal_places)))
for k, v in cap_socres.items():
cap_socres[k] = round(v.mean(), args.decimal_places)
cap_socres["std"] = std
cap_socres["runs"] = runs
df.loc[model] = cap_socres
for k, v in cap_socres2.items():
cap_socres2[k] = round(
np.mean(np.array(v) / counter2[k] * 100), args.decimal_places
)
cap_socres2["std"] = std
cap_socres2["runs"] = runs
df2.loc[model] = cap_socres2
df.to_csv(cap_score_file)
df2.to_csv(cap_int_score_file)
return df, df2
if __name__ == "__main__":
args = arg_parser()
if args.openai_api_key:
OPENAI_API_KEY = args.openai_api_key
else:
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
client = OpenAI(
api_key=OPENAI_API_KEY
)
if os.path.exists(args.result_file) is False:
raise ValueError("Result file does not exist")
if not args.result_file.endswith(('.json', '.JSON')):
raise ValueError("Result file should be a json file")
model = pathlib.Path(args.result_file).stem
metadata = load_metadata(args)
(
sub_set,
sub_set_name,
data,
counter,
cap_set_list,
cap_set_counter,
len_data,
df,
df2,
cap_set_names,
) = metadata
file_names = get_file_names(args, model, sub_set_name)
(
grade_file,
cap_score_file,
cap_int_score_file,
) = file_names
grade_results = runs(
args,
grade_file,
data,
len_data,
sub_set,
)
df, df2 = export_result(
args,
model,
df,
df2,
grade_results,
data,
cap_set_counter,
cap_set_names,
)
print(df)
print("\n")
print(df2)
print("\n")
print(f"Grading results are saved in:\n{grade_file}\n{cap_score_file}\n{cap_int_score_file}")