-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDVCS_xsec.py
816 lines (626 loc) · 58.5 KB
/
DVCS_xsec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
"""
In this module we have the DVCS cross-section formulas with twist-two Compton form factors based on our work https://inspirehep.net/literature/1925449
The five fold cross-section dsigma over dxB dt dQ dphi dphi_S will be calculated.
"""
from scipy.integrate import quad_vec
#The proton mass M = 0.938 GeV
M = 0.938
#The fine structure constant
alphaEM = 1 / 137.036
#Conversion factor from GeV to nb for the cross-section
conv = 389.9 * 1000
import numpy as np
from numpy import cos as Cos
from numpy import sin as Sin
from numpy import sqrt as Sqrt
from numpy import pi as Pi
from numpy import real as Real
from numpy import imag as Imag
from numpy import conjugate as Conjugate
import warnings
from numba import njit, vectorize
#warnings.filterwarnings(action="error", category=np.ComplexWarning)
#The prefactor for cross-section given by some kinematics
@njit
def Gamma_prefac(y: float, xB: float, Q: float):
"""Kinematic prefactor in the cross-sections
Check e.g. https://inspirehep.net/literature/1925449
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
Q (float): photon virtuality
Returns:
Gamma: the prefactor as defined in the ref.
"""
return (alphaEM**3*xB*y**2)/(16.*Pi**2*Q**4*Sqrt(1 + (4*M**2*xB**2)/Q**2))
@njit
def xi(xB: float, t: float, Q: float):
"""Skewness parameter xi that can be expressed with the kinematics
Args:
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
Returns:
xi (float): skewness parameter
"""
return (1/(2 - xB) - (2*t*(-1 + xB))/(Q**2*(-2 + xB)**2))*xB
@njit
def N(xB: float, t: float, Q: float):
"""Numeric factor, essentially the transverse momentum transfer squared
Args:
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
Returns:
N (float): numeric factor
"""
return Sqrt(- 4 * M ** 2 * xi(xB,t,Q) ** 2 - t * (1 - xi(xB,t,Q) ** 2)) / M
@njit
def h_pureDVCS(y: float, xB: float, t: float, Q: float, phi: float):
"""Kinematical variable for pure DVCS cross-sections
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
h (float): kinematical variables for pure DVCS
"""
return -0.5*(Q**4*(Q**2 + t*(-1 + 2*xB))*(-2 + y))/((Q**2 + t)*(Q**2 + 4*M**2*xB**2)*y) - (2*Q**3*(Q**2 + t*xB)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))/(M*(Q**2 + t)*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y) + (Q**4*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**2)/(M**2*(Q**2 + t)**2*xB**2*(Q**2 + 4*M**2*xB**2)**3*y**2)
@njit
def hminus_pureDVCS(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for pure DVCS cross-sections
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
h (float): kinematical variables for pure DVCS
"""
return (Q**4*(Q**2 + t*(-1 + 2*xB))*(-2 + y))/(2.*Sqrt((Q**2 + t)**2)*(Q**2 + 4*M**2*xB**2)*y) + (2*Q**3*(Q**2 + t*xB)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))/(M*Sqrt((Q**2 + t)**2)*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y)
@njit
def A_BH(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
A_BH (float): kinematical variables for BH cross-section
"""
return (-8*M*(Q**2 + 4*M**2*xB**2)*(M*(8*M**6*t**2*xB**6*y**2 + 4*M**4*Q**2*t*xB**4*(t + 2*t*xB - 4*M**2*xB**2)*y**2 - Q**8*(t*(-1 + xB) - M**2*xB**2)*(2 - 2*y + y**2) + M**2*Q**4*xB**2*(8*M**4*xB**4*y**2 - 8*M**2*t*xB**2*(-4 + 4*y + (-1 + xB)*y**2) + t**2*(2 - 2*xB**2*(-2 + y)**2 - 2*y + y**2 + 4*xB*y**2)) + Q**6*xB*(4*M**4*xB**3*y**2 + t**2*(2 - xB*(-2 + y)**2 - 2*y + y**2) - 2*M**2*t*xB*(-6 + 6*y + (-3 + 2*xB)*y**2))) + 2*Q**5*(Q**2 + t*xB)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(-2*M**2*t*xB - Q**2*(t - 2*M**2*xB))*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(-2 + y)*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi) + 8*M**3*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2))*(Q**2*(-1 + y) + M**2*xB**2*y**2)*Cos(phi)**2))/(Q**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def B_BH(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
B_BH (float): kinematical variables for BH cross-section
"""
return (-4*M*t*xB*(Q**2 + 4*M**2*xB**2)*(M*xB*(8*M**4*t**2*xB**4*y**2 + 4*M**2*Q**2*t*xB**2*(t - 4*M**2*xB**2)*y**2 + Q**8*(2 - 2*y + y**2) + 2*Q**6*(2*M**2*xB**2*y**2 + t*(-2 + xB*(-2 + y)**2 + 2*y - y**2)) + Q**4*(-8*M**2*t*xB**2*y**2 + 8*M**4*xB**4*y**2 + t**2*(2 - 2*xB*(-2 + y)**2 + 2*xB**2*(-2 + y)**2 - 2*y + y**2))) + 4*Q**5*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + t**2*xB*(-1 + 2*xB) + Q**2*t*(-1 + 3*xB))*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(-2 + y)*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi) + 8*M*xB*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2))*(Q**2*(-1 + y) + M**2*xB**2*y**2)*Cos(phi)**2))/(Q**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def At_BH_L(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
At_BH (float): kinematical variables for polarized BH cross-section
"""
return (-4*M*(Q**2 + 4*M**2*xB**2)**2*y*(-(M*xB*(2*Q**2*t**3*(-1 + xB)*xB*(t*(-1 + xB)**2 + M**2*(4 - 3*xB)*xB) - (4*M**2 - t)*t**4*xB**2*(1 - 3*xB + 2*xB**2) - 2*Q**8*(-2 + xB)*(t - t*xB + M**2*xB**2) + 2*Q**6*t*xB*(-(M**2*xB*(-4 + xB + xB**2)) + t*(3 - 5*xB + 2*xB**2)) + Q**4*t**2*(2*M**2*(5 - 4*xB)*xB**3 + t*(-4 + 10*xB - 7*xB**2 - xB**3 + 2*xB**4)))*(-2 + y)) + 2*Q*(Q**2 + t*xB)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(2*(4*M**2 - t)*t**3*(-1 + xB)*xB**2 - 2*Q**2*t**2*(-2 + xB)*xB*(t*(-1 + xB) - 2*M**2*xB) + Q**6*(-2 + xB)*(t*(2 - 3*xB) + 4*M**2*xB**2) + Q**4*t*(8*M**2*(-1 + xB)*xB**2 + t*(-4 + 4*xB + xB**2 - 2*xB**3)))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/((Q**2 + t)*(Q**2*(-2 + xB) + t*(-1 + xB)*xB)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def Bt_BH_L(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Bt_BH (float): kinematical variables for polarized BH cross-section
"""
return (4*M*(Q**2 + 4*M**2*xB**2)**2*y*(-(M*xB*(Q**8*(-2 + xB)*(t*(-2 + xB) - 2*M**2*xB**2) - t**4*(-1 + xB)*xB**2*(4*M**2*(-1 + xB) + t*(-1 + 2*xB)) + Q**6*t*xB*(2*M**2*xB*(4 + xB - 2*xB**2) + t*(8 - 10*xB + 3*xB**2)) - Q**2*t**3*xB*(2*M**2*xB*(4 - 5*xB + 2*xB**2) + t*(4 - 10*xB + 5*xB**2)) + Q**4*t**2*(2*M**2*(7 - 6*xB)*xB**3 + t*(-4 + 8*xB - 5*xB**3 + 2*xB**4)))*(-2 + y)) + 4*Q*(Q**2 + t*xB)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(t**3*(4*M**2 + t)*(-1 + xB)*xB**2 + Q**6*(-2 + xB)*(t - t*xB + 2*M**2*xB**2) + Q**2*t**2*xB*(2*M**2*(-2 + xB)*xB + t*(-3 + 2*xB)) - Q**4*t*(-4*M**2*(-1 + xB)*xB**2 + t*(2 - 2*xB**2 + xB**3)))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/((Q**2 + t)*(Q**2*(-2 + xB) + t*(-1 + xB)*xB)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def At_BH_Tin(y: float, xB: float, t: float, Q: float, phi: float):
"""Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
At_BH_Tin (float): kinematical variables for polarized BH cross-section
"""
return (-2*(Q**2 + 4*M**2*xB**2)**2*((4*M**2 - t)*t*(-1 + xB)*xB + Q**2*(-2 + xB)*(-t + 2*M**2*xB))*y*(-(M*xB*(2*Q**2*t**3*(-1 + xB)*xB*(t*(-1 + xB)**2 + M**2*(4 - 3*xB)*xB) - (4*M**2 - t)*t**4*xB**2*(1 - 3*xB + 2*xB**2) - 2*Q**8*(-2 + xB)*(t - t*xB + M**2*xB**2) + 2*Q**6*t*xB*(-(M**2*xB*(-4 + xB + xB**2)) + t*(3 - 5*xB + 2*xB**2)) + Q**4*t**2*(2*M**2*(5 - 4*xB)*xB**3 + t*(-4 + 10*xB - 7*xB**2 - xB**3 + 2*xB**4)))*(-2 + y)) + 2*Q*(Q**2 + t*xB)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(2*(4*M**2 - t)*t**3*(-1 + xB)*xB**2 - 2*Q**2*t**2*(-2 + xB)*xB*(t*(-1 + xB) - 2*M**2*xB) + Q**6*(-2 + xB)*(t*(2 - 3*xB) + 4*M**2*xB**2) + Q**4*t*(8*M**2*(-1 + xB)*xB**2 + t*(-4 + 4*xB + xB**2 - 2*xB**3)))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(Q**2*(Q**2 + t)*(-2 + xB)**2*(Q**2*(-2 + xB) + t*(-1 + xB)*xB)*Sqrt(-(((4*M**2 - t)*t**2*(-1 + xB)**2*xB**2 + Q**2*(4*M**2 - t)*t*xB**2*(2 - 3*xB + xB**2) + Q**4*(-2 + xB)**2*(t - t*xB + M**2*xB**2))/(Q**4*(-2 + xB)**4)))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def Bt_BH_Tin(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Bt_BH_Tin (float): kinematical variables for polarized BH cross-section
"""
return (8*M**2*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*xB*(Q**2 + 4*M**2*xB**2)**2*y*(-(M*xB*(-2*M**2*t**4*(-1 + xB)**2*xB**2 - Q**8*(-2 + xB)*(t - t*xB + M**2*xB**2) - Q**2*t**3*xB*(t*(-1 + xB)**2 + M**2*xB*(4 - 5*xB + 2*xB**2)) + Q**6*t*xB*(M**2*xB*(4 + xB - 2*xB**2) + t*(5 - 8*xB + 3*xB**2)) + Q**4*t**2*(M**2*(7 - 6*xB)*xB**3 + t*(-2 + 3*xB + xB**2 - 4*xB**3 + 2*xB**4)))*(-2 + y)) + 2*Q*(Q**2 + t*xB)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(4*M**2*t**3*(-1 + xB)*xB**2 + Q**2*t**2*xB*(t*(-1 + xB) + 2*M**2*(-2 + xB)*xB) + Q**6*(-2 + xB)*(t - 2*t*xB + 2*M**2*xB**2) + Q**4*t*(4*M**2*(-1 + xB)*xB**2 + t*(-2 + 3*xB**2 - 2*xB**3)))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(Q**2*(Q**2 + t)*(-2 + xB)**2*(Q**2*(-2 + xB) + t*(-1 + xB)*xB)*Sqrt(-(((4*M**2 - t)*t**2*(-1 + xB)**2*xB**2 + Q**2*(4*M**2 - t)*t*xB**2*(2 - 3*xB + xB**2) + Q**4*(-2 + xB)**2*(t - t*xB + M**2*xB**2))/(Q**4*(-2 + xB)**4)))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def At_BH_Tout(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
At_BH_Tout (float): kinematical variables for polarized BH cross-section
"""
return (2*(Q**2 - t)*t*(-4*M**2 + t)*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*xB*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)**3*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*y*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Sin(phi))/(Q*(Q**2 + t)*(-2 + xB)**2*Sqrt(-(((4*M**2 - t)*t**2*(-1 + xB)**2*xB**2 + Q**2*(4*M**2 - t)*t*xB**2*(2 - 3*xB + xB**2) + Q**4*(-2 + xB)**2*(t - t*xB + M**2*xB**2))/(Q**4*(-2 + xB)**4)))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def Bt_BH_Tout(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for polarized BH cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Bt_BH_Tout (float): kinematical variables for polarized BH cross-section
"""
return (8*M**2*(Q**2 - t)*t*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*xB*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)**3*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*y*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Sin(phi))/(Q*(Q**2 + t)*(-2 + xB)**2*Sqrt(-(((4*M**2 - t)*t**2*(-1 + xB)**2*xB**2 + Q**2*(4*M**2 - t)*t*xB**2*(2 - 3*xB + xB**2) + Q**4*(-2 + xB)**2*(t - t*xB + M**2*xB**2))/(Q**4*(-2 + xB)**4)))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def A_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
A_INT_unp (float): kinematical variables for interference cross-section
"""
return (-64*M**2*xB**2*(Q**2 + 4*M**2*xB**2)**3*y**2*((Q**4*(Q**2 + t)*(Q**2*(-1 + y) + t*(-1 + xB*y)))/(16.*xB*y) - (Q**2*(2*t**2 + Q**2*t*(1 + 2*xB)*y + Q**4*(-2 + 3*y))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(16.*M*xB**2*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y**2) + (Q**4*(t*(1 + y) + Q**2*(-1 + 2*y))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**2)/(8.*M**2*xB**3*(Q**2 + 4*M**2*xB**2)**3*y**3) - (Q**4*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**3)/(8.*M**3*xB**4*(Q**2 + 4*M**2*xB**2)**4*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y**3)))/(Q**2*(Q**2 + t)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def B_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
B_INT_unp (float): kinematical variables for interference cross-section
"""
return (8*Q*t*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*(M*Q*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**2 + t*(-1 + 2*xB))*(-2 + y) + 4*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(M*(Q**2 + t)**2*(-2 + xB)**2*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y)
@njit
def C_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
C_INT_unp (float): kinematical variables for interference cross-section
"""
return (-8*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(-(M**2*t**2*xB**2) + Q**2*t*xB*(t*(-1 + xB) - 2*M**2*xB) + Q**4*(t*(-1 + xB) - M**2*xB**2))*(-2 + y) + Q*(Q**2 + 4*M**2*xB**2)*(Q**4 + t**2*xB*(-1 + 2*xB) + Q**2*t*(-1 + 3*xB))*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(M*xB*(-4*M**2*Q**2*t**2*xB**2*y**2 - 8*M**4*t**2*xB**4*y**2 + Q**8*(2 - 2*y + y**2) + Q**6*(t*(-1 + 2*xB)*(-2 + y)**2 + 4*M**2*xB**2*y**2) + 2*Q**4*(t**2*(1 - xB*(-2 + y)**2 + xB**2*(-2 + y)**2 - y) + 4*M**4*xB**4*y**2)) + 4*Q**5*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + t**2*xB*(-1 + 2*xB) + Q**2*t*(-1 + 3*xB))*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*(-2 + y)*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi) + 8*M*xB*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2))*(Q**2*(-1 + y) + M**2*xB**2*y**2)*Cos(phi)**2))/(Q**2*(Q**2 + t)*Sqrt((Q**2 + t)**2)*(-2 + xB)**2*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def At_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized beam
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
At_INT_unp (float): kinematical variables for interference cross-section with polarized beam
"""
return (32*M*Q*Sqrt(t*(-1 + t/(4.*M**2)))*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)**3*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*y*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*((Q**2*(Q**2 + t))/4. - ((Q**2 + t)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(2.*M*xB*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y) + (Q**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**2)/(2.*M**2*xB**2*(Q**2 + 4*M**2*xB**2)**3*y**2))*Sin(phi))/(Sqrt((Q**2 + t)**2)*Sqrt(t*(-4 + t/M**2))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def Bt_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized beam
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Bt_INT_unp (float): kinematical variables for interference cross-section with polarized beam
"""
return 0
@njit
def Ct_INT_unp(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized beam
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Ct_INT_unp (float): kinematical variables for interference cross-section with polarized beam
"""
return (-64*M*Sqrt(t*(-1 + t/(4.*M**2)))*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*xB*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)**3*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*y*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*(-0.125*(Q**2*(Q**2 + t)**2) + ((Q**2 - t)*(Q**2 + t)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(4.*M*xB*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y) - (Q**2*(Q**2 - t)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**2)/(4.*M**2*xB**2*(Q**2 + 4*M**2*xB**2)**3*y**2))*Sin(phi))/(Q*(Q**2 + t)**2*Sqrt(t*(-4 + t/M**2))*(-2 + xB)**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def A_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
A_INT_pol (float): kinematical variables for interference cross-section with polarized target
"""
return (-4*Q**6*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*(M*Q*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**2 + t*(-1 + 2*xB))*(-2 + y) + 4*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*Sin(phi))/((Q**2 + t)*xB*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def B_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
B_INT_pol (float): kinematical variables for interference cross-section with polarized target
"""
return 0
@njit
def C_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
C_INT_pol (float): kinematical variables for interference cross-section with polarized target
"""
return (4*Q**4*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*Sqrt(1 - (1 + (2*M**2*(Q**2 + t)*xB**2)/(Q**4 + Q**2*t*xB))**2/(1 + (4*M**2*xB**2)/Q**2))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*(M*Q*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**2 + t*(-1 + 2*xB))*(-2 + y) + 4*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*Sin(phi))/(Sqrt((Q**2 + t)**2)*(-2 + xB)**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def At_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target and target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
At_INT_pol (float): kinematical variables for interference cross-section with polarized target and target
"""
return (64*M**2*xB**2*(Q**2 + 4*M**2*xB**2)**3*y**2*((Q**4*(Q**2 + t)*(Q**2*(-1 + y) + t*(-1 + xB*y)))/(16.*xB*y) - (Q**2*(Q**2 + t)*(2*t*xB*y + Q**2*(-2 + 3*y))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/(16.*M*xB**2*(Q**2 + 4*M**2*xB**2)*Sqrt(1 + (4*M**2*xB**2)/Q**2)*y**2) + (Q**4*(Q**2 + t*xB)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))**2)/(8.*M**2*xB**3*(Q**2 + 4*M**2*xB**2)**3*y**2)))/(Q**2*Sqrt((Q**2 + t)**2)*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def Bt_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target and target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Bt_INT_pol (float): kinematical variables for interference cross-section with polarized target and target
"""
return (8*t*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*xB)/(Sqrt((Q**2 + t)**2)*(-2 + xB)**2)
@njit
def Ct_INT_pol(y: float, xB: float, t: float, Q: float, phi: float):
""" Kinematical variable for interference cross-section with polarized target and target
| Defined in the appendix of https://inspirehep.net/literature/1925449
| Code converted from the Mathematica master code and numerically checked
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): momentum transfer square
Q (float): photon virtuality
phi (float): azimuthal angel
Returns:
Ct_INT_pol (float): kinematical variables for interference cross-section with polarized target and target
"""
return (8*Q**3*(Q**2*(-2 + xB) + 2*t*(-1 + xB))*(M*Q*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**2 + t*(-1 + 2*xB))*(-2 + y) + 4*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(-(M**2*t**2*xB**2) + Q**2*t*xB*(t*(-1 + xB) - 2*M**2*xB) + Q**4*(t*(-1 + xB) - M**2*xB**2))*(-2 + y) + Q*(Q**2 + 4*M**2*xB**2)*(Q**4 + t**2*xB*(-1 + 2*xB) + Q**2*t*(-1 + 3*xB))*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))/((Q**2 + t)**2*(-2 + xB)**2*(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4*(-1 + y) + 2*M**2*t*xB**2*y + Q**2*(t + t*xB*(-2 + y) + 2*M**2*xB**2*y)) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi))*(-(M*xB*Sqrt(1 + (4*M**2*xB**2)/Q**2)*(Q**4 + 2*M**2*t*xB**2*y + Q**2*(2*M**2*xB**2*y + t*(-1 + 2*xB + y - xB*y)))) + 2*Q*(Q**2 + t*xB)*(Q**2 + 4*M**2*xB**2)*Sqrt(-((M**2*xB**2*(M**2*t**2*xB**2 + Q**2*t*xB*(t + 2*M**2*xB - t*xB) + Q**4*(t - t*xB + M**2*xB**2)))/((Q**3 + Q*t*xB)**2*(Q**2 + 4*M**2*xB**2))))*Sqrt(1 - y - (M**2*xB**2*y**2)/Q**2)*Cos(phi)))
@njit
def GE_FF(t):
""" Electric form factors taken from global analysis
Args:
t (float): momentum transfer square
Returns:
GE (float): Electro-Magnetic form factors taken from global analysis https://inspirehep.net/literature/1613527
"""
return (-9.14935193966684 + 54.294024034390276*Sqrt(0.0779191396 - t) + t*(136.5654233846795 - 467.9889798263139*Sqrt(0.0779191396 - t) + t*(-356.33976285348626 + 492.07500397303323*Sqrt(0.0779191396 - t) + t*(167.32689941569018 - 15.056820275484046*Sqrt(0.0779191396 - t) + t*(-0.8293426255316358 - 0.0034036166377127072*Sqrt(0.0779191396 - t) + (-0.0024470359051638347 + 0.0007055977957364234*Sqrt(0.0779191396 - t) - 0.00038999999999989043*t)*t)))))/(0.881997244666898 + Sqrt(0.0779191396 - t))**12
@njit
def GM_FF(t):
""" Magentic form factors taken from global analysis
Args:
t (float): momentum transfer square
Returns:
GM (float): Magentic-Magnetic form factors taken from global analysis https://inspirehep.net/literature/1613527
"""
return (62.80178446046987 - 164.88646954222185*Sqrt(0.0779191396 - t) + t*(-880.969678407686 + 1171.7507047011227*Sqrt(0.0779191396 - t) + t*(2260.679768631847 - 923.4532810241969*Sqrt(0.0779191396 - t) + t*(-495.99250268661956 + 68.849541922215*Sqrt(0.0779191396 - t) + t*(4.77087295630026 + 0.00785931565497526*Sqrt(0.0779191396 - t) + (0.0016567896964982563 - 0.0006355619225276535*Sqrt(0.0779191396 - t) - 0.000025276650001424538*t)*t)))))/(0.881997244666898 + Sqrt(0.0779191396 - t))**12
@njit
def F1_FF(t):
""" Dirac form factors calculated with GE and GM
Args:
t (float): momentum transfer square
Returns:
F1 (float): Dirac form factors
"""
return (GE_FF(t) - t/ (4 * M ** 2) * GM_FF(t))/(1 - t/ (4 * M ** 2))
@njit
def F2_FF(t):
""" Pauli form factors calculated with GE and GM
Args:
t (float): momentum transfer square
Returns:
F2 (float): Pauli form factors
"""
return (-GE_FF(t) + GM_FF(t))/(1 - t/ (4 * M ** 2))
####################################################################################################################
########################### The functions below are the definition of differential cross sections
# I had to change the order of the functions to make numba work
# The total cross-section is given by the sum of Bethe-Heitler (BH), pure DVCS and interference (INT) contributions
def dsigma_TOT(y: float, xB: float, t: float, Q: float, phi: float, pol, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
""" Combining the BH, Pure DVCS and interfernce cross-sections
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): _description_
Q (float): momentum transfer squared
phi (float): azimuthal angel
pol (_type_): polarization configuration
HCFF (complex): Compton form factor H
ECFF (complex): Compton form factor E
HtCFF (complex): Compton form factor Ht
EtCFF (complex): Compton form factor Et
Returns:
total differential cross-sections dsigma (float)
"""
return dsigma_BH(y, xB, t, Q, phi, pol) + dsigma_DVCS(y, xB, t, Q, phi, pol, HCFF, ECFF, HtCFF, EtCFF) + dsigma_INT(y, xB, t, Q, phi, pol, HCFF, ECFF, HtCFF, EtCFF)
# The total cross-section integrated over phi
def dsigma_DVCS_HERA(y: float, xB: float, t: float, Q: float, pol, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
"""cross-sections of virtual photon and proton scattering check for instance https://arxiv.org/abs/2310.13837
| A flux factor from leptonic emission of virtual photon will be taken out compared to the leptonic-proton cross-sections
| HEAR only measures the virtual-photon-proton cross-sections and integrate over phi
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): _description_
Q (float): momentum transfer squared
pol (_type_): polarization configuration
HCFF (complex): Compton form factor H
ECFF (complex): Compton form factor E
HtCFF (complex): Compton form factor Ht
EtCFF (complex): Compton form factor Et
Returns:
total differential cross-sections dsigma (float) of virtual-photon and proton
"""
Conv = alphaEM * (1- y + 1/2 * y ** 2)/(Pi * y * Q ** 2) * y / xB
return 1/Conv * quad_vec(lambda phi: dsigma_DVCS(y, xB, t, Q, phi, pol,HCFF, ECFF, HtCFF, EtCFF), 0, 2 * Pi)[0]
@np.vectorize
def _pol_to_index(pol: str):
"""A helper function to convert pol string to integer. Because numba can deal with integer array but not string array
pol (string): polarization configuration ={U,L}{U,L,Tin,Tout} first one is beam polarization, second one is target polarization
"""
if(pol == "UU"):
return 0
if(pol == "LU"):
return 1
if(pol == "UL"):
return 2
if(pol == "LL"):
return 3
if(pol == "UTin"):
return 4
if(pol == "LTin"):
return 5
if(pol == "UTout"):
return 6
if(pol == "LTout"):
return 7
return -999
# The Bethe-Heitler cross-section contribute to four polarization configurations
def dsigma_BH(y: float, xB: float, t: float, Q: float, phi: float, pol):
"""A helper function converting the pol to number. check __dsigma_BH() for details
pol (string): polarization configuration ={U,L}{U,L,Tin,Tout}, check _pol_to_index()
"""
pol_index = _pol_to_index(pol)
return __dsigma_BH(y, xB, t, Q, phi, pol_index)
# The Bethe-Heitler cross-section contribute to four polarization configurations
@vectorize(["float64(float64, float64, float64, float64, float64, int32)",
"float64(float64, float64, float64, float64, float64, int64)"])
def __dsigma_BH(y: float, xB: float, t: float, Q: float, phi: float, pol_index: int):
"""The actual BH cross-section formulae, check https://inspirehep.net/literature/1925449
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): _description_
Q (float): momentum transfer squared
pol_index (int): polarization configuration, check _pol_to_index()
Returns:
differential cross-sections of BH
"""
prefac_BH = conv * Gamma_prefac(y, xB, Q) * t ** (-2)
# For unpolarized/longitudinally polarized target, integrate over dphi_S gives an extra factor of 2 * pi.
if(pol_index == 0):
return 2 * Pi * prefac_BH * (A_BH(y, xB, t, Q, phi) * ( F1_FF(t) ** 2 - t / (4 * M ** 2) * F2_FF(t) ** 2 ) + B_BH(y, xB, t, Q, phi) * ( F1_FF(t)+ F2_FF(t) ) ** 2 )
if(pol_index == 3):
return 2 * Pi * prefac_BH * (At_BH_L(y, xB, t, Q, phi) * ( F1_FF(t) * F2_FF(t) + F2_FF(t) ** 2 ) + Bt_BH_L(y, xB, t, Q, phi) * ( F1_FF(t)+ F2_FF(t) ) ** 2 )
if(pol_index == 5):
return prefac_BH * (At_BH_Tin(y, xB, t, Q, phi) * ( F1_FF(t) * F2_FF(t) + F2_FF(t) ** 2 ) + Bt_BH_Tin(y, xB, t, Q, phi) * ( F1_FF(t)+ F2_FF(t) ) ** 2 )
if(pol_index == 7):
return prefac_BH * (At_BH_Tout(y, xB, t, Q, phi) * ( F1_FF(t) * F2_FF(t) + F2_FF(t) ** 2 ) + Bt_BH_Tout(y, xB, t, Q, phi) * ( F1_FF(t)+ F2_FF(t) ) ** 2 )
return 0
def dsigma_DVCS(y: float, xB: float, t: float, Q: float, phi: float, pol, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
"""A helper function converting the pol to number. check __dsigma_DVCS() for details
pol (string): polarization configuration ={U,L}{U,L,Tin,Tout}, check _pol_to_index()
"""
pol_index = _pol_to_index(pol)
return __dsigma_DVCS(y, xB, t, Q, phi, pol_index, HCFF, ECFF, HtCFF, EtCFF)
@vectorize(["float64(float64, float64, float64, float64, float64, int32, complex128, complex128, complex128, complex128)",
"float64(float64, float64, float64, float64, float64, int64, complex128, complex128, complex128, complex128)"])
def __dsigma_DVCS(y: float, xB: float, t: float, Q: float, phi: float, pol_index, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
"""The actual pure DVCS cross-section formulae, check https://inspirehep.net/literature/1925449
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): _description_
Q (float): momentum transfer squared
pol_index (int): polarization configuration, check _pol_to_index()
HCFF (complex): Compton form factor H
ECFF (complex): Compton form factor E
HtCFF (complex): Compton form factor Ht
EtCFF (complex): Compton form factor Et
Returns:
differential cross-sections of pure DVCS
"""
prefac_DVCS = conv * Gamma_prefac(y, xB, Q) * Q ** (-4)
Xi = xi(xB, t, Q)
# For unpolarized/longitudinally polarized target, integrate over dphi_S gives an extra factor of 2 * pi.
if(pol_index == 0):
return 2 * Pi * prefac_DVCS * 4 * h_pureDVCS(y, xB, t, Q, phi) * Real( (1 - Xi ** 2) * (Conjugate(HCFF) * HCFF + Conjugate(HtCFF) * HtCFF ) - t / (4 * M ** 2) * ( Conjugate(ECFF)* ECFF + Xi ** 2 * Conjugate(EtCFF)* EtCFF) - Xi ** 2 * (Conjugate(ECFF)* ECFF + Conjugate(ECFF) * HCFF + Conjugate(HCFF)* ECFF + Conjugate(EtCFF) * HtCFF + Conjugate(HtCFF)* EtCFF) )
if(pol_index == 6):
return prefac_DVCS * 4 * N(xB, t, Q) * h_pureDVCS(y,xB,t,Q,phi) * Imag( Conjugate(HCFF) * ECFF - Xi * Conjugate(HtCFF) * EtCFF)
if(pol_index == 3):
return 2 * Pi * prefac_DVCS * 8 * hminus_pureDVCS(y, xB, t, Q, phi) * Real( (1 - Xi ** 2) * Conjugate(HtCFF) * HCFF - Xi ** 2 * ( Conjugate(HtCFF)* ECFF + Conjugate(EtCFF)* HCFF) - (Xi ** 2/ (1 + Xi) + t /(4 * M ** 2))* Xi* Conjugate(EtCFF) * ECFF)
if(pol_index == 5):
return prefac_DVCS * 4 * N(xB, t, Q) * hminus_pureDVCS(y,xB,t,Q,phi) * Real( Conjugate(HtCFF) * ECFF - Xi * Conjugate(EtCFF) * HCFF - Xi ** 2/ (1 + Xi) * Conjugate(EtCFF) * ECFF )
return 0
def dsigma_INT(y: float, xB: float, t: float, Q: float, phi: float, pol, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
"""A helper function converting the pol to number. check __dsigma_INT() for details
pol (string): polarization configuration ={U,L}{U,L,Tin,Tout}, check _pol_to_index()
"""
pol_index = _pol_to_index(pol)
return __dsigma_INT(y, xB, t, Q, phi, pol_index, HCFF, ECFF, HtCFF, EtCFF)
@vectorize(["float64(float64, float64, float64, float64, float64, int32, complex128, complex128, complex128, complex128)",
"float64(float64, float64, float64, float64, float64, int64, complex128, complex128, complex128, complex128)"])
def __dsigma_INT(y: float, xB: float, t: float, Q: float, phi: float, pol_index, HCFF: complex, ECFF: complex, HtCFF: complex, EtCFF: complex):
"""The actual interference cross-section formulae, check https://inspirehep.net/literature/1925449
Args:
y (float): Beam energy lost parameter
xB (float): x_bjorken
t (float): _description_
Q (float): momentum transfer squared
pol_index (int): polarization configuration, check _pol_to_index()
HCFF (complex): Compton form factor H
ECFF (complex): Compton form factor E
HtCFF (complex): Compton form factor Ht
EtCFF (complex): Compton form factor Et
Returns:
differential cross-sections of interference
"""
prefac_INT = conv * Gamma_prefac(y, xB, Q) * Q ** (-2) * (-t) ** (-1)
Xi = xi(xB, t, Q)
# For unpolarized/longitudinally polarized target, integrate over dphi_S gives an extra factor of 2 * pi.
if(pol_index == 0):
return 2 * Pi * prefac_INT * Real(A_INT_unp(y, xB, t, Q, phi) * (HCFF * F1_FF(t) - t/ (4* M ** 2) * ECFF * F2_FF(t)) + B_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + ECFF) + C_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * HtCFF )
if(pol_index == 1):
return 2 * Pi * prefac_INT * Imag(A_INT_pol(y, xB, t, Q, phi) * (HCFF * F1_FF(t) - t/ (4* M ** 2) * ECFF * F2_FF(t)) + B_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + ECFF) + C_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * HtCFF )
if(pol_index == 2):
return 2 * Pi * prefac_INT * Imag(At_INT_unp(y, xB, t, Q, phi) * ( F1_FF(t) * (HtCFF - Xi ** 2/ (1 + Xi) * EtCFF) - F2_FF(t) * t/ (4 * M ** 2) * Xi* EtCFF ) + Bt_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + Xi/ (1 + Xi ) * EtCFF) - Ct_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + Xi/ (1 + Xi ) * ECFF) )
if(pol_index == 3):
return 2 * Pi * prefac_INT * (-1) * Real(At_INT_pol(y, xB, t, Q, phi) * ( F1_FF(t) * (HtCFF - Xi ** 2/ (1 + Xi) * EtCFF) - F2_FF(t) * t/ (4 * M ** 2) * Xi* EtCFF ) + Bt_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + Xi/ (1 + Xi ) * EtCFF) - Ct_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + Xi/ (1 + Xi ) * ECFF) )
if(pol_index == 4):
return prefac_INT * 2 / N(xB, t, Q) * Imag( At_INT_unp(y, xB, t, Q, phi) * ( Xi * F1_FF(t) * ( Xi * HtCFF + (Xi ** 2 /(1 + Xi) + t/ (4 * M ** 2)) * EtCFF) + F2_FF(t) * t /(4 * M ** 2) *( (Xi ** 2 -1) * HtCFF + Xi ** 2 * EtCFF ) ) + Bt_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + (t /(4 * M ** 2)- Xi/(1 + Xi) )* Xi *EtCFF) + Ct_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (Xi * HCFF + (t /(4 * M ** 2) + Xi ** 2 /(1 + Xi) )* ECFF) )
if(pol_index == 5):
return prefac_INT * (-2) / N(xB, t, Q) * Real( At_INT_pol(y, xB, t, Q, phi) * ( Xi * F1_FF(t) * ( Xi * HtCFF + (Xi ** 2 /(1 + Xi) + t/ (4 * M ** 2)) * EtCFF) + F2_FF(t) * t /(4 * M ** 2) *( (Xi ** 2 -1) * HtCFF + Xi ** 2 * EtCFF ) ) + Bt_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + (t /(4 * M ** 2)- Xi/(1 + Xi) )* Xi *EtCFF) + Ct_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (Xi * HCFF + (t /(4 * M ** 2) + Xi ** 2 /(1 + Xi) )* ECFF) )
if(pol_index == 6):
return prefac_INT * (-2) / N(xB, t, Q) * Imag( A_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) * (Xi ** 2 * HCFF +(Xi ** 2 + t/(4 * M **2)) * ECFF) + F2_FF(t) *t /(4 * M ** 2) * ((Xi ** 2 -1)* HCFF + Xi ** 2 * ECFF) ) + B_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + t/ (4 * M **2) *ECFF) - Xi * C_INT_unp(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + t/ (4 * M **2) *EtCFF) )
if(pol_index == 7):
return prefac_INT * (2) / N(xB, t, Q) * Real( A_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) * (Xi ** 2 * HCFF +(Xi ** 2 + t/(4 * M **2)) * ECFF) + F2_FF(t) *t /(4 * M ** 2) * ((Xi ** 2 -1)* HCFF + Xi ** 2 * ECFF) ) + B_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HCFF + t/ (4 * M **2) *ECFF) - Xi * C_INT_pol(y, xB, t, Q, phi) * (F1_FF(t) + F2_FF(t)) * (HtCFF + t/ (4 * M **2) *EtCFF) )
return -1
# The codes below are not meant to be readable as they are converted from the master Mathematica code presented in https://inspirehep.net/literature/1925449
# Refer to our publication for the definition of scalar coefficients and how the cross-section can be expressed with them.
# Some test print to numerical check with the master Mathematica code
"""
print(A_BH(0.2, 0.1, -0.1, 2, 3.14/2))
print(B_BH(0.2, 0.1, -0.1, 2, 3.14/2))
print(At_BH_L(0.2, 0.1, -0.1, 2, 3.14/2))
print(Bt_BH_L(0.2, 0.1, -0.1, 2, 3.14/2))
print(At_BH_Tin(0.2, 0.1, -0.1, 2, 3.14/2))
print(Bt_BH_Tin(0.2, 0.1, -0.1, 2, 3.14/2))
print(At_BH_Tout(0.2, 0.1, -0.1, 2, 3.14/2))
print(Bt_BH_Tout(0.2, 0.1, -0.1, 2, 3.14/2))
print(h_pureDVCS(0.2, 0.1, -0.1, 2, 3.14/2))
print(hminus_pureDVCS(0.2, 0.1, -0.1, 2, 3.14/2))
print(A_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(B_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(C_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(At_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(Bt_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(Ct_INT_unp(0.2, 0.1, -0.1, 2, 3.14/2))
print(A_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(B_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(C_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(At_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(Bt_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(Ct_INT_pol(0.2, 0.1, -0.1, 2, 3.14/2))
print(dsigma_DVCS(0.49624,0.34,-0.17,Sqrt(1.82),Pi/3, "UU", -4.19 + 2.67 * 1j, -3.49 + 0.785 * 1j,1.73 + 4.32 *1j,21 + 52*1j ))
print(dsigma_INT(0.49624,0.34,-0.17,Sqrt(1.82),Pi/3, "UU", -4.19 + 2.67 * 1j, -3.49 + 0.785 * 1j,1.73 + 4.32 *1j,21 + 52*1j ))
print(dsigma_INT(0.49624,0.34,-0.17,Sqrt(1.82),Pi/2, "LU", -4.19 + 2.67 * 1j, -3.49 + 0.785 * 1j,1.73 + 4.32 *1j,21 + 52*1j ))
"""