MS COCO 2017 Val
Backbone | Supervision | Original (Bbox) | Ours (Bbox) | Original (Mask) | Ours (Mask) |
---|---|---|---|---|---|
FPN w/ ResNet50 | bbox | 36.7 % [3] | 37.1 % | ||
FPN w/ ResNet101 | bbox | 39.4 % [3] | 39.5 % | ||
FPN w/ ResNet50 | bbox + mask | 37.3 % [3] | 38.0 % | 33.7% [3] | 34.2 % |
FPN w/ ResNet101 | bbox + mask | 39.4 % [3] | 40.4% | 35.6% [3] | 36.0% |
Scores are the mean of mean Average Precision (mmAP).
If faster_rcnn_*
is used as --model
, the script conducts object detection.
If mask_rcnn_*
is used as --model
, the script conducts instance segmentation instead.
This demo downloads MS COCO pretrained model automatically if a pretrained model path is not given.
$ python demo.py [--model faster_rcnn_fpn_resnet50|faster_rcnn_fpn_101|mask_rcnn_fpn_50|mask_rcnn_fpn_101] [--gpu <gpu>] [--pretrained-model <model_path>] <image>.jpg
For object detection, use chainercv/examples/detection/eval_detection.py
for evaluation.
For instance segmentation, use chainercv/examples/detection/eval_instance_segmentation.py
for evaluation.
You can train the model with the following code.
Note that this code requires chainermn
module.
$ mpiexec -n <#gpu> python train_multi.py [--model faster_rcnn_fpn_resnet50|faster_rcnn_fpn_resnet101|mask_rcnn_fpn_resnet50|mask_rcnn_fpn_resnet101] [--batchsize <batchsize>]
Note that cv2
is required for training Mask R-CNN.
- Tsung-Yi Lin et al. "Feature Pyramid Networks for Object Detection" CVPR 2017
- Kaiming He et al. "Mask R-CNN" ICCV 2017
- Detectron