-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsofaBaseFitness.py
217 lines (178 loc) · 8.86 KB
/
sofaBaseFitness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# coding: utf8
#############################################################################
#
# This file is part of evolveRobot.
#
# Contributors:
# - created by Valentin Owczarek
#############################################################################
import threading
import os
import hashlib
import json
from subprocess import Popen, PIPE, call
from fitness import Fitness
from indi import *
from config import Config
from agregator import *
def binarybin(values):
"""This binning function is using the first value at [0]. If < 0 it return 1.0 (there is matter at
this location. Otherwise it return 0 (no matter)"""
if values[0] < 0:
return 1
return 0
def computeKey(m):
res = ""
for i in range(len(m)):
for j in range(len(m[0])):
res+="{0}".format(m[i][j])
m= hashlib.md5()
m.update(res.encode())
hashcode = m.hexdigest()
return hashcode
def addCache(k, s, raw, table):
if k in table:
testRaw = table[k][1]
for i in range(len(testRaw)):
for j in range(len(testRaw[0])):
if testRaw[i][j] != raw[i][j]:
print("ERROR")
raise NotImplementedError
else:
table[k]=(s,raw)
return 1
class FitnessSofa(Fitness):
def __init__(self, name, theCanvas,
sofaScene="test1.pyscn", topologyMinFile="minTopoTest1"):
Fitness.__init__(self)
self.name=name
self.canvas = theCanvas
self.sofaScene = sofaScene
sys.path.insert(0, Config.fitnessSofaSceneFolder)
exec("import {0}".format(topologyMinFile))
self.topologyMin = sys.modules[topologyMinFile].topology
#building working directory for the threads
allThread = threading.enumerate()
mainThread = threading.main_thread()
for t in allThread:
if t != mainThread:
Popen(["mkdir", "-p", "/tmp/evolveRobots/{0}".format(t.ident)])
Popen(["cp", Config.fitnessSofaSceneFolder + "/controller.py", Config.fitnessSofaSceneFolder + "/"+sofaScene, Config.fitnessSofaSceneFolder + "/tools.py", "/tmp/evolveRobots/{0}".format(t.ident)]) #copy object
##############
# CACHE INIT #
##############
self.cacheLock = threading.Lock()
self.cache = {}
def toMatrice(self, candidate):
return self.canvas.toMatrice(candidate, binarybin)
"""
Create the Candidate matrix representation.
return the matrix and the number of voxel
The function use the minTopo.py file,
where the 1 value code for materials and
2 for no materials
"""
def makeCandidateMatrix(self, candidate):
#imgTest = self.canvas.toMatrice(candidate, binarybin)
imgTest = self.toMatrice(candidate)
cptVoxel = 0
for i in range(self.canvas.resolution[0]):
for j in range(self.canvas.resolution[1]):
if self.topologyMin[i][j] == 2:
imgTest[i][j] = 0
if self.topologyMin[i][j] == 1:
imgTest[i][j] = 1
if imgTest[i][j] == 1:
cptVoxel += 1
return (imgTest, cptVoxel)
"""
Parse the result of the simulation, stdout from Sofa create by controller.py
"""
def parseResult(self, astdout):
#Parse the sofa output searching for the score.
temp = astdout.split("animation")
temp = temp[2:]
temp = temp[:len(temp)-1]
pos = []
for t in temp: #for all step
tSplit = t.split(",")
for i in tSplit:#for all value
try:
posUnit = float(i)
if posUnit >= 70:
return [sys.maxsize]
pos.append(posUnit)
except ValueError:
pass
return pos
def writeCandidateMatrix(self, basedir, candidate, imgTest):
#clean up
if os.path.exists(basedir+"topo.pyc"):
rm = Popen(["rm",basedir+"topo.pyc"])
rm.wait()
#write the candidate shape into a file. This file is then read by the python script used to
# load the sofa scene.
topo = open(basedir+"topo.py","w")
topo.write("#Topology for candidate #{0} score={1}\n".format(candidate.myId, candidate.fitness))
topo.write("topology = [\n")
# Into the shape description file we are writing the image generated from the
# candidate using the canvas and the provided binning function.
for j in range(self.canvas.resolution[1]):
topo.write("[")
topo.write("{0}".format(imgTest[0][j]))
for i in range(1, self.canvas.resolution[0]):
topo.write(",{0}".format(imgTest[i][j]))
if j == self.canvas.resolution[1]-1:
topo.write("]\n")
else:
topo.write("],\n")
topo.write("]")
topo.close()
def writeBestResult(self, filename):
imgTest, cptVoxel = self.makeCandidateMatrix(self.bestOverAll)
self.writeCandidateMatrix(filename, self.bestOverAll, imgTest)
def simulate(self, candidate):
idThread = threading.get_ident()
imgTest, cptVoxel = self.makeCandidateMatrix(candidate)
basedir = "/tmp/evolveRobots/{0}/".format(idThread)
#########
# CACHE #
#########
key = computeKey(imgTest)
fitScore = None
with self.cacheLock:
if key in self.cache:
fitScore = self.cache[key]
if fitScore != None:
for i in range(len(imgTest)):
for j in range(len(imgTest[0])):
if imgTest[i][j] != fitScore[1][i][j]:
print("Collision \n {0} \n {1}".format(fitScore[1], imgTest))
raise NotImplementedError
return fitScore[0]
# In order to score the candidate we need to benchmark it using a sofa simulation
# the following line is starting sofa as an external application. Sofa is started
# in batch mode (-g batch) and will do Config.fitnessTimeStep iterations (-n).
# At each iteration step the score will be printed to the standard output
self.writeCandidateMatrix(basedir, candidate, imgTest)
a = Popen(["runSofa", "-g", "batch", "-n", "{0}".format(Config.fitnessTimeStep), "/tmp/evolveRobots/{0}/{1}".format(idThread, self.sofaScene)], stdout=PIPE, universal_newlines=True) #add /tmp/thread.ident
astdout, _ = a.communicate()
a.stdout.close()
pos = self.parseResult(astdout)
#print(pos)
if Config.fitnessAgregator == "max":
res = maxAgregator(pos)
elif Config.fitnessAgregator == "min":
res = minAgregator(pos)
elif Config.fitnessAgregator == "average":
res = averageAgregator(pos)
else:
raise ValueError
final = (res * Config.fitnessRateScore) + (cptVoxel * Config.fitnessRateVoxel)
#########
# CACHE #
#########
with self.cacheLock:
addCache(key, final, imgTest, self.cache)
#TODO valentin : moyenne des carré
return final