forked from namsor/go-qrcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbol.go
309 lines (260 loc) · 6.81 KB
/
symbol.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// go-qrcode
// Copyright 2014 Tom Harwood
package qrcode
// symbol is a 2D array of bits representing a QR Code symbol.
//
// A symbol consists of size*size modules, with each module normally drawn as a
// black or white square. The symbol also has a border of quietZoneSize modules.
//
// A (fictional) size=2, quietZoneSize=1 QR Code looks like:
//
// +----+
// | |
// | ab |
// | cd |
// | |
// +----+
//
// For ease of implementation, the functions to set/get bits ignore the border,
// so (0,0)=a, (0,1)=b, (1,0)=c, and (1,1)=d. The entire symbol (including the
// border) is returned by bitmap().
//
type symbol struct {
// Value of module at [y][x]. True is set.
module [][]bool
// True if the module at [y][x] is used (to either true or false).
// Used to identify unused modules.
isUsed [][]bool
// Combined width/height of the symbol and quiet zones.
//
// size = symbolSize + 2*quietZoneSize.
size int
// Width/height of the symbol only.
symbolSize int
// Width/height of a single quiet zone.
quietZoneSize int
}
// newSymbol constructs a symbol of size size*size, with a border of
// quietZoneSize.
func newSymbol(size int, quietZoneSize int) *symbol {
var m symbol
m.module = make([][]bool, size+2*quietZoneSize)
m.isUsed = make([][]bool, size+2*quietZoneSize)
for i := range m.module {
m.module[i] = make([]bool, size+2*quietZoneSize)
m.isUsed[i] = make([]bool, size+2*quietZoneSize)
}
m.size = size + 2*quietZoneSize
m.symbolSize = size
m.quietZoneSize = quietZoneSize
return &m
}
// get returns the module value at (x, y).
func (m *symbol) get(x int, y int) (v bool) {
v = m.module[y+m.quietZoneSize][x+m.quietZoneSize]
return
}
// empty returns true if the module at (x, y) has not been set (to either true
// or false).
func (m *symbol) empty(x int, y int) bool {
return !m.isUsed[y+m.quietZoneSize][x+m.quietZoneSize]
}
// numEmptyModules returns the number of empty modules.
//
// Initially numEmptyModules is symbolSize * symbolSize. After every module has
// been set (to either true or false), the number of empty modules is zero.
func (m *symbol) numEmptyModules() int {
var count int
for y := 0; y < m.symbolSize; y++ {
for x := 0; x < m.symbolSize; x++ {
if !m.isUsed[y+m.quietZoneSize][x+m.quietZoneSize] {
count++
}
}
}
return count
}
// set sets the module at (x, y) to v.
func (m *symbol) set(x int, y int, v bool) {
m.module[y+m.quietZoneSize][x+m.quietZoneSize] = v
m.isUsed[y+m.quietZoneSize][x+m.quietZoneSize] = true
}
// set2dPattern sets a 2D array of modules, starting at (x, y).
func (m *symbol) set2dPattern(x int, y int, v [][]bool) {
for j, row := range v {
for i, value := range row {
m.set(x+i, y+j, value)
}
}
}
// bitmap returns the entire symbol, including the quiet zone.
func (m *symbol) bitmap() [][]bool {
module := make([][]bool, len(m.module))
for i := range m.module {
module[i] = m.module[i][:]
}
return module
}
// string returns a pictorial representation of the symbol, suitable for
// printing in a TTY.
func (m *symbol) string() string {
var result string
for _, row := range m.module {
for _, value := range row {
switch value {
case true:
result += " "
case false:
// Unicode 'FULL BLOCK' (U+2588).
result += "██"
}
}
result += "\n"
}
return result
}
// Constants used to weight penalty calculations. Specified by ISO/IEC
// 18004:2006.
const (
penaltyWeight1 = 3
penaltyWeight2 = 3
penaltyWeight3 = 40
penaltyWeight4 = 10
)
// penaltyScore returns the penalty score of the symbol. The penalty score
// consists of the sum of the four individual penalty types.
func (m *symbol) penaltyScore() int {
return m.penalty1() + m.penalty2() + m.penalty3() + m.penalty4()
}
// penalty1 returns the penalty score for "adjacent modules in row/column with
// same colour".
//
// The numbers of adjacent matching modules and scores are:
// 0-5: score = 0
// 6+ : score = penaltyWeight1 + (numAdjacentModules - 5)
func (m *symbol) penalty1() int {
penalty := 0
for x := 0; x < m.symbolSize; x++ {
lastValue := m.get(x, 0)
count := 1
for y := 1; y < m.symbolSize; y++ {
v := m.get(x, y)
if v != lastValue {
count = 1
lastValue = v
} else {
count++
if count == 6 {
penalty += penaltyWeight1 + 1
} else if count > 6 {
penalty++
}
}
}
}
for y := 0; y < m.symbolSize; y++ {
lastValue := m.get(0, y)
count := 1
for x := 1; x < m.symbolSize; x++ {
v := m.get(x, y)
if v != lastValue {
count = 1
lastValue = v
} else {
count++
if count == 6 {
penalty += penaltyWeight1 + 1
} else if count > 6 {
penalty++
}
}
}
}
return penalty
}
// penalty2 returns the penalty score for "block of modules in the same colour".
//
// m*n: score = penaltyWeight2 * (m-1) * (n-1).
func (m *symbol) penalty2() int {
penalty := 0
for y := 1; y < m.symbolSize; y++ {
for x := 1; x < m.symbolSize; x++ {
topLeft := m.get(x-1, y-1)
above := m.get(x, y-1)
left := m.get(x-1, y)
current := m.get(x, y)
if current == left && current == above && current == topLeft {
penalty++
}
}
}
return penalty * penaltyWeight2
}
// penalty3 returns the penalty score for "1:1:3:1:1 ratio
// (dark:light:dark:light:dark) pattern in row/column, preceded or followed by
// light area 4 modules wide".
//
// Existence of the pattern scores penaltyWeight3.
func (m *symbol) penalty3() int {
penalty := 0
for y := 0; y < m.symbolSize; y++ {
var bitBuffer int16 = 0x00
for x := 0; x < m.symbolSize; x++ {
bitBuffer <<= 1
if v := m.get(x, y); v {
bitBuffer |= 1
}
switch bitBuffer & 0x7ff {
// 0b000 0101 1101 or 0b10111010000
// 0x05d or 0x5d0
case 0x05d, 0x5d0:
penalty += penaltyWeight3
bitBuffer = 0xFF
default:
if x == m.symbolSize-1 && (bitBuffer&0x7f) == 0x5d {
penalty += penaltyWeight3
bitBuffer = 0xFF
}
}
}
}
for x := 0; x < m.symbolSize; x++ {
var bitBuffer int16 = 0x00
for y := 0; y < m.symbolSize; y++ {
bitBuffer <<= 1
if v := m.get(x, y); v {
bitBuffer |= 1
}
switch bitBuffer & 0x7ff {
// 0b000 0101 1101 or 0b10111010000
// 0x05d or 0x5d0
case 0x05d, 0x5d0:
penalty += penaltyWeight3
bitBuffer = 0xFF
default:
if y == m.symbolSize-1 && (bitBuffer&0x7f) == 0x5d {
penalty += penaltyWeight3
bitBuffer = 0xFF
}
}
}
}
return penalty
}
// penalty4 returns the penalty score...
func (m *symbol) penalty4() int {
numModules := m.symbolSize * m.symbolSize
numDarkModules := 0
for x := 0; x < m.symbolSize; x++ {
for y := 0; y < m.symbolSize; y++ {
if v := m.get(x, y); v {
numDarkModules++
}
}
}
numDarkModuleDeviation := numModules/2 - numDarkModules
if numDarkModuleDeviation < 0 {
numDarkModuleDeviation *= -1
}
return penaltyWeight4 * (numDarkModuleDeviation / (numModules / 20))
}