-
Notifications
You must be signed in to change notification settings - Fork 0
/
wdenv.tex
286 lines (286 loc) · 13 KB
/
wdenv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
\documentstyle[lgrind,fancyhead]{article}
\pagestyle{plain}
\lhead[\fancyplain{}{\bf\thepage}]{\fancyplain{}{\bf wdenv.c}}
\rhead[\fancyplain{}{\bf\thepage}]{\fancyplain{}{\bf wdenv.c}}
\cfoot{}
\begin{document}
\begin{lgrind}
\File{wdenv.c},{14:24},{Jan 12 1998}
\L{\LB{\K{\#include}_\<\V{stdio}.\V{h}\>}}
\L{\LB{\K{\#include}_\<\V{math}.\V{h}\>}}
\L{\LB{}}
\L{\LB{\C{}\1\* This determines the smallest step in w-space \*\1\CE{}}}
\L{\LB{\C{}\1\* if the wstep goes bellow this limit stop searching for better w \*\1\CE{}_}}
\L{\LB{\K{\#define}_\V{MinWstep}_1e\-300}}
\L{\LB{}}
\L{\LB{\C{}\1\* Prototype declarations of all functions used by the program \*\1\CE{}}}
\L{\LB{\K{void}_\V{init}();}}
\L{\LB{\K{int}_\V{menu}(\K{double}_\*\V{RadiusStart},\K{double}_\*\V{RadiusEnd},\K{int}_\*\V{NRadiusSteps});}}
\L{\LB{\K{void}_\V{findw}(\K{double}_\V{radius});}}
\L{\LB{\K{double}_\V{Pe}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w});}}
\L{\LB{\K{double}_\V{Pd}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w});}}
\L{\LB{\K{double}_\V{X}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w});}}
\L{\LB{\K{double}_\V{RADIUS}(\K{double}_\V{a},\K{double}_\V{w},\K{double}_\V{R});}}
\L{\LB{\K{double}_\V{MASS}(\K{double}_\V{a},\K{double}_\V{w});}}
\L{\LB{}}
\L{\LB{\C{}\1\* Some constants used by the program \*\1\CE{}}}
\L{\LB{\V{const}_\K{double}_\V{c}______=2.99791e8,_\1\1_\V{m}\1\V{s}}}
\L{\LB{_____________\V{pi}_____=3.14159,}}
\L{\LB{_____________\V{me}_____=9.10953e\-31,_\1\1_\V{kg}_}}
\L{\LB{_____________\V{mp}_____=1.67265e\-27,_\1\1_\V{kg}}}
\L{\LB{_____________\V{planck}_=6.6237e\-34,_\1\1_\V{Js}}}
\L{\LB{_____________\V{k}______=1.38024e\-23,_\1\1_\V{J}\1\V{K}}}
\L{\LB{_____________\V{G}______=6.668e\-11,_\1\1_\V{N}_\V{m}\^2\1\V{kg}\^2}}
\L{\LB{_____________\V{Lsun}___=3.86e26,_\1\1_\V{W}}}
\L{\LB{_____________\V{Msun}___=1.991e30,_\1\1_\V{kg}}}
\L{\LB{_____________\V{Rsun}___=6.960e8,_\1\1_\V{m}}}
\L{\LB{_____________\V{mue}____=2e0,}}
\L{\LB{_____________\V{mu}_____=1.3e0;}}
\L{\LB{}}
\L{\LB{\C{}\1\* These variables hold the values of the model we are looking for: \*\1\CE{}}}
\L{\LB{\C{}\1\* M = mass of the dwarf in solarmass. \*\1\CE{}}}
\L{\LB{\C{}\1\* L = luminosity in solarluminosity \*\1\CE{}}}
\L{\LB{\C{}\1\* They are set to some default values. \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\K{double}_\V{M}_=_1.053,}}
\L{\LB{_______\V{L}_=_3.02e\-3;}}
\L{\LB{}}
\L{\LB{\C{}\1\* pointer to file to hold output \*\1\CE{}}}
\L{\LB{__\V{FILE}_\*\V{fp};}}
\L{\LB{}}
\L{\LB{\C{}\1\* name of file to use for output \*\1\CE{}}}
\L{\LB{\K{char}_\V{outfile}[40]_=_\S{}\"wdenv.dat\"\SE{};}}
\L{\LB{_________}}
\L{\LB{\K{void}_\V{main}()}}
\L{\LB{\{}}
\L{\LB{\C{}\1\* dummy variable to hold user responses to questions \*\1\CE{}}}
\L{\LB{\C{}\1\* we are not really interested in their value \*\1\CE{}}}
\L{\LB{__\K{char}_\V{cdummy};}}
\L{\LB{}}
\L{\LB{\C{}\1\* RadiusStart,RadiusEnd hold minimum and maximum radii to make models for \*\1\CE{}}}
\L{\LB{\C{}\1\* in solarradii also set to default values\*\1\CE{}}}
\L{\LB{__\K{double}_}}
\L{\LB{____\V{RadiusStart}_=_.001,}}
\L{\LB{____\V{RadiusEnd}___=_.011;}}
\L{\LB{}}
\L{\LB{\C{}\1\* NRadiusSteps hold number of radii to make envelope for \*\1\CE{}}}
\L{\LB{__\K{int}_}}
\L{\LB{____\V{NRadiusSteps}_=_21,}}
\L{\LB{____\V{i},\V{idummy};}}
\L{\LB{}}
\L{\LB{__\K{do}_\C{}\1\* while (1) =\> repeat endlessly \*\1\CE{}}}
\L{\LB{____\{}}
\L{\LB{____}}
\L{\LB{\C{}\1\* menu of choices \*\1\CE{}}}
\L{\LB{______\K{do}_}}
\L{\LB{}\Tab{8}{\{}}
\L{\LB{}\Tab{8}{__\V{idummy}_=_\V{menu}(\&\V{RadiusStart},\&\V{RadiusEnd},\&\V{NRadiusSteps});}}
\L{\LB{}\Tab{8}{\}_\K{while}(\V{idummy}_\>_0);}}
\L{\LB{______\K{if}_(\V{idummy}_==_\-1)_\V{exit}(0);}}
\L{\LB{}}
\L{\LB{\C{}\1\* seems to be needed to clear the keyboard buffer \*\1\CE{}}}
\L{\LB{______\V{scanf}(\S{}\"\%c\"\SE{},\&\V{cdummy});}}
\L{\LB{}}
\L{\LB{______\V{fp}_=_\V{fopen}(\V{outfile},\S{}\"w+\"\SE{});}}
\L{\LB{\C{}\1\* make header for table \*\1\CE{}}}
\L{\LB{______\V{printf}(\S{}\"__Router_____Rinner____MassInner___x\2n\"\SE{});}}
\L{\LB{______\V{fprintf}(\V{fp},\S{}\"Router,Rinner,MassInner,x\2n\"\SE{});}}
\L{\LB{______\K{for}_(\V{i}=0;\V{i}\<\V{NRadiusSteps};\V{i}++)}}
\L{\LB{}\Tab{8}{\{}}
\L{\LB{}\Tab{8}{__\V{findw}(\V{RadiusStart}+}}
\L{\LB{}\Tab{16}{(\K{double})\V{i}\1(\K{double})(\V{NRadiusSteps}\-1)\*(\V{RadiusEnd}\-\V{RadiusStart}));}}
\L{\LB{}\Tab{8}{\}}}
\L{\LB{______\V{fclose}(\V{fp});}}
\L{\LB{______\V{printf}(\S{}\"[Return]_to_continue\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%c\"\SE{},\&\V{cdummy});}}
\L{\LB{____\}_\K{while}(1);}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* Ask the user for model parameters: \*\1\CE{}}}
\L{\LB{\C{}\1\* mass,luminosity \*\1\CE{}}}
\L{\LB{\C{}\1\* Also let the user decide on radii to make envelope for: \*\1\CE{}}}
\L{\LB{\C{}\1\* RadiusStart,RadiusEnd,NRadiusSteps \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\C{}\1\* input to init(): \*\1\CE{}}}
\L{\LB{\C{}\1\* \*RadiusStart,\*RadiusEnd,\*NRadiusSteps \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\C{}\1\* output by init(): \*\1\CE{}}}
\L{\LB{\C{}\1\* -1 user chose stop \*\1\CE{}}}
\L{\LB{\C{}\1\* 0 user chose start model \*\1\CE{}}}
\L{\LB{\C{}\1\* other user changed some value \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\C{}\1\* global variables changable by init(): \*\1\CE{}}}
\L{\LB{\C{}\1\* M,L \*\1\CE{}}}
\L{\LB{\K{int}_\V{menu}(\K{double}_\*\V{RadiusStart},\K{double}_\*\V{RadiusEnd},\K{int}_\*\V{NRadiusSteps})}}
\L{\LB{\{}}
\L{\LB{\C{}\1\* variable to hold user input on menu \*\1\CE{}}}
\L{\LB{__\K{int}_\V{input};}}
\L{\LB{}}
\L{\LB{\C{}\1\* variable to hold value entered by user \*\1\CE{}}}
\L{\LB{__\K{float}_\V{fdummy};}}
\L{\LB{}}
\L{\LB{__\V{printf}(\S{}\"\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\2n\"\SE{});}}
\L{\LB{__\V{printf}(\S{}\"1)_mass_in_solarmass:_\%f\2n\"\SE{},\V{M});}}
\L{\LB{__\V{printf}(\S{}\"2)_luminosity_in_solarluminosity:_\%f\2n\"\SE{},\V{L});}}
\L{\LB{__\V{printf}(\S{}\"3)_Smallest_Radius:_\%f\2n\"\SE{},\*\V{RadiusStart});}}
\L{\LB{__\V{printf}(\S{}\"4)_Largest_Radius:_\%f\2n\"\SE{},\*\V{RadiusEnd});}}
\L{\LB{__\V{printf}(\S{}\"5)_Number_of_Radii:_\%d\2n\"\SE{},\*\V{NRadiusSteps});}}
\L{\LB{__\V{printf}(\S{}\"6)_Output_filename:_\%s\2n\"\SE{},\V{outfile});}}
\L{\LB{__\V{printf}(\S{}\"9)_start_model\2n\"\SE{});}}
\L{\LB{__\V{printf}(\S{}\"0)_EXIT\2n\"\SE{});}}
\L{\LB{__\V{printf}(\S{}\"\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\2n\"\SE{});}}
\L{\LB{__\V{printf}(\S{}\"Choice:_\"\SE{});}}
\L{\LB{__\V{scanf}(\S{}\"\%d\"\SE{},\&\V{input});__}}
\L{\LB{}}
\L{\LB{__\K{switch}(\V{input})}}
\L{\LB{__\{}}
\L{\LB{__\K{case}_9:_\K{return}(0);}}
\L{\LB{__\K{case}_1:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"mass_in_solarmass:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%f\"\SE{},\&\V{fdummy});}}
\L{\LB{______\V{M}_=_(\K{double})\V{fdummy};}}
\L{\LB{______\K{return}(1);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_2:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"luminosity_in_solarluminosity:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%f\"\SE{},\&\V{fdummy});}}
\L{\LB{______\V{L}_=_(\K{double})\V{fdummy};}}
\L{\LB{______\K{return}(2);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_3:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"Smallest_Radius:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%f\"\SE{},\&\V{fdummy});}}
\L{\LB{______\*\V{RadiusStart}_=_(\K{double})\V{fdummy};}}
\L{\LB{______\K{return}(3);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_4:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"Largest_Radius:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%f\"\SE{},\&\V{fdummy});}}
\L{\LB{______\*\V{RadiusEnd}_=_(\K{double})\V{fdummy};}}
\L{\LB{______\K{return}(4);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_5:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"Number_of_Radii:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%d\"\SE{},\&\*\V{NRadiusSteps});}}
\L{\LB{______\K{return}(5);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_6:}}
\L{\LB{____\{}}
\L{\LB{______\V{printf}(\S{}\"output_filename:\2n\"\SE{});}}
\L{\LB{______\V{scanf}(\S{}\"\%s\"\SE{},\&\V{outfile});}}
\L{\LB{______\K{return}(6);}}
\L{\LB{____\}}}
\L{\LB{__\K{case}_0:}}
\L{\LB{____\{}}
\L{\LB{______\K{return}(\-1);}}
\L{\LB{____\}}}
\L{\LB{__\}}}
\L{\LB{__\K{return}(0);}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* findw(R) \*\1\CE{}}}
\L{\LB{\C{}\1\* procedure that takes a radius(R) and searches for the w \*\1\CE{}}}
\L{\LB{\C{}\1\* that makes the electron pressure on the inner edge of the envelope \*\1\CE{}}}
\L{\LB{\C{}\1\* equal to the degenerate pressure until the w differs less than \*\1\CE{}}}
\L{\LB{\C{}\1\* MinWstep from the true w. \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\C{}\1\* input to find(radius): \*\1\CE{}}}
\L{\LB{\C{}\1\* outer radius of the dwarf \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\K{void}_\V{findw}(\K{double}_\V{R})}}
\L{\LB{\{}}
\L{\LB{\C{}\1\* w holds the value at which we evaluate Pe and Pd \*\1\CE{}}}
\L{\LB{\C{}\1\* wstep is the amount we change w each loop to get a better w \*\1\CE{}}}
\L{\LB{\C{}\1\* alpha holds value of opacity parameter \*\1\CE{}}}
\L{\LB{\C{}\1\* radius,mass,x hold the radius,mass and x for the final w value \*\1\CE{}}}
\L{\LB{}}
\L{\LB{__\K{double}_\V{w},\V{wstep},\V{alpha},\V{beta},\V{radius},\V{mass},\V{x};}}
\L{\LB{}}
\L{\LB{__\V{alpha}_=_6.2716e\-3\*\V{pow}(\V{mu}\*\V{pow}(\V{L},2e0)\*\V{R}\1\V{pow}(\V{M},3e0),1e0\14e0);}}
\L{\LB{__\V{beta}_=_1.44029e\-3\*\V{mu}\*\V{M}\1\V{R};}}
\L{\LB{}}
\L{\LB{\C{}\1\* we assume right value of w is between 0 ans 2 \*\1\CE{}}}
\L{\LB{\C{}\1\* set w=wstep=1 \*\1\CE{}}}
\L{\LB{\C{}\1\* 1 make wstep half of wstep \*\1\CE{}}}
\L{\LB{\C{}\1\* 2 if Pe(w) \< Pd(w) then decrease w by wstep else increase by wstep \*\1\CE{}}}
\L{\LB{\C{}\1\* repeat 1 and 2 if wstep \> MinWstep \*\1\CE{}}}
\L{\LB{}}
\L{\LB{\C{}\1\* start in between 0 and 2 \*\1\CE{}}}
\L{\LB{__\V{w}_=_\V{wstep}_=_1e0;}}
\L{\LB{_}}
\L{\LB{__\K{do}}}
\L{\LB{____\{}}
\L{\LB{______\V{wstep}_\1=_2e0;}}
\L{\LB{______(\V{Pd}(\V{alpha},\V{beta},\V{w})_\>_\V{Pe}(\V{alpha},\V{beta},\V{w}))_?__(\V{w}_\-=_\V{wstep})_:_(\V{w}_+=_\V{wstep});}}
\L{\LB{____\}_\K{while}_(\V{wstep}_\>_\V{MinWstep});}}
\L{\LB{}}
\L{\LB{__\V{radius}_=_\V{RADIUS}(\V{alpha},\V{w},\V{R});}}
\L{\LB{__\V{mass}_=_\V{MASS}(\V{alpha},\V{w});}}
\L{\LB{__\V{x}_=_\V{X}(\V{alpha},\V{beta},\V{w});}}
\L{\LB{__\V{fprintf}(\V{fp},\S{}\"\%e_\%e_\%e_\%e\2n\"\SE{},}}
\L{\LB{}\Tab{8}{_\V{R},\V{radius},\V{mass},\V{x});}}
\L{\LB{__\V{printf}(\S{}\"\%f_\%e_\%e_\%e\2n\"\SE{},}}
\L{\LB{}\Tab{8}{_\V{R},\V{radius},\V{mass},\V{x});}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* Pe(a,b,w) \*\1\CE{}}}
\L{\LB{\C{}\1\* Returns value of the electron pressure for given a,b,w \*\1\CE{}}}
\L{\LB{\K{double}_\V{Pe}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w})}}
\L{\LB{\{}}
\L{\LB{__\K{return}(124e0\115e0\*\V{pow}(\V{b},4e0)\*\V{mu}\1\V{a}\1\V{mue}\*\V{pow}(\V{w},9e0)\*\V{pow}(\V{w}+\V{a},8e0));}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* Pd(a,b,w) \*\1\CE{}}}
\L{\LB{\C{}\1\* Returns value of the degenerate pressure for given a,b,w \*\1\CE{}}}
\L{\LB{\K{double}_\V{Pd}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w})}}
\L{\LB{\{}}
\L{\LB{__\K{double}_\V{x};}}
\L{\LB{__\V{x}_=_\V{X}(\V{a},\V{b},\V{w});}}
\L{\LB{__\K{return}(\V{x}\*(2e0\*\V{x}\*\V{x}\-3e0)\*\V{sqrt}(\V{x}\*\V{x}+1e0)+3e0\*\V{log}(\V{x}+\V{sqrt}(\V{x}\*\V{x}+1e0)));}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* MASS(a,w) \*\1\CE{}}}
\L{\LB{\C{}\1\* returns interior-mass for a given a,w \*\1\CE{}}}
\L{\LB{\C{}\1\* uses M the total starmass \*\1\CE{}}}
\L{\LB{\K{double}_\V{MASS}(\K{double}_\V{a},\K{double}_\V{w})}}
\L{\LB{\{}}
\L{\LB{__\V{const}_\K{double}_\V{sqrt2}_=_1.41421356237309504880;}}
\L{\LB{__\K{double}_\V{f},\V{w4},\V{w4w41};}}
\L{\LB{}}
\L{\LB{__\V{w4}_=_\V{pow}(\V{w},4e0);}}
\L{\LB{__\V{w4w41}_=_\V{w4}\1(\V{w4}+1);}}
\L{\LB{}}
\L{\LB{__\V{f}_=__195e0_\1_32e0\*\V{w}}}
\L{\LB{_____\-_195e0_\1_128e0_\*_\V{sqrt2}_}}
\L{\LB{_____\*_(_\V{log}(_\V{w}\*\V{w}_+_\V{w}\*\V{sqrt2}_+_1e0_)_+_2e0_\*_\V{atan}((\V{w}\*\V{w}+\V{sqrt}(1+\V{w4})\-1e0)\1\V{w}\1\V{sqrt2}))}}
\L{\LB{_____+_(195e0\1256e0\*\V{sqrt2}\-253e0\151e0\*\V{a})\*\V{log}(\V{w4}+1)}}
\L{\LB{_____+_172e0\151e0\*\V{a}\*\V{pow}(\V{w4w41},4e0)}}
\L{\LB{_____\-_(\V{w}\13e0_\-_253e0\1153e0\*\V{a})\*\V{pow}(\V{w4w41},3e0)}}
\L{\LB{_____\-_(13e0\124e0\*\V{w}\-253e0\1102e0\*\V{a})\*\V{w4w41}\*\V{w4w41}}}
\L{\LB{_____\-_(117e0\196e0\*\V{w}\-253e0\151e0\*\V{a})\*\V{w4w41};}}
\L{\LB{}}
\L{\LB{__\K{return}(\V{M}\*(1e0\-.0101243\*\V{pow}(\V{mu},4e0)\*\V{M}\*\V{M}\*\V{f}\1\V{a}));}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* RADIUS(a,w,R) \*\1\CE{}}}
\L{\LB{\C{}\1\* returns radius for a given a,w \*\1\CE{}}}
\L{\LB{\C{}\1\* uses R, the starradius \*\1\CE{}}}
\L{\LB{\K{double}_\V{RADIUS}(\K{double}_\V{a},\K{double}_\V{w},\K{double}_\V{R})}}
\L{\LB{\{}}
\L{\LB{__\K{return}(\V{R}\1(\V{pow}(\V{w}+\V{a},3e0)\*(\V{w}+19e0\151e0\*\V{a})_\-_19e0\151e0\*\V{pow}(\V{a},4e0)_+_1e0));}}
\L{\LB{\}}}
\L{\LB{}}
\L{\LB{\C{}\1\* X(a,b,w) \*\1\CE{}}}
\L{\LB{\C{}\1\* returns degeneracy parameter for a given a,b,w \*\1\CE{}}}
\L{\LB{\K{double}_\V{X}(\K{double}_\V{a},\K{double}_\V{b},\K{double}_\V{w})}}
\L{\LB{\{}}
\L{\LB{__\K{return}(\V{pow}(31e0\*\V{pi}\160e0\*\V{mu}\1\V{a}\1\V{mue},1e0\13e0)\*\V{b}\*\V{pow}(\V{w},7e0\13e0)\*\V{pow}(\V{w}+\V{a},2e0));}}
\L{\LB{\}}}
\L{\LB{}}
\end{lgrind}
\end{document}