-
Notifications
You must be signed in to change notification settings - Fork 0
/
RELISH_documents_pruned.tsv
We can make this file beautiful and searchable if this error is corrected: Illegal quoting in line 10.
11 lines (11 loc) · 15.9 KB
/
RELISH_documents_pruned.tsv
1
2
3
4
5
6
7
8
9
10
11
PMID title abstract
22569528 ERK1/2 MAP kinases: structure, function, and regulation. ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
17928366 MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments. In this study, we provide novel insight into the mechanism of how ERK2 can be sorted to different intracellular compartments and thereby mediate different responses. MEK1-activated ERK2 accumulated in the nucleus and induced proliferation. Conversely, MEK2-activated ERK2 was retained in the cytoplasm and allowed survival. Localization was a determinant for ERK2 functions since MEK1 switched from providing proliferation to be a mediator of survival when ERK2 was routed to the cytoplasm by the attachment of a nuclear export site. MEK1-mediated ERK2 nuclear translocation and proliferation were shown to depend on phosphorylation of S298 and T292 sites in the MEK1 proline-rich domain. These sites are phosphorylated on cellular adhesion in MEK1 but not MEK2. Whereas p21-activated kinase phosphorylates S298 and thus enhances the MEK1-ERK2 association, ERK2 phosphorylates T292, leading to release of active ERK2 from MEK1. On the basis of these results, we propose that the requirement of adhesion for cells to proliferate in response to growth factors, in part, may be explained by the MEK1 S298/T292 control of ERK2 nuclear translocation. In addition, we suggest that ERK2 intracellular localization determines whether growth factors mediate proliferation or survival and that the sorting occurs in an adhesion-dependent manner.
18562239 The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. The mitogen-activated protein (MAP) kinase extracellular-signal-regulated kinases (ERKs) are activated by diverse mechanisms. These include ligation of receptor tyrosine kinases such as epidermal growth factor (EGF) and cell adhesion receptors such as the integrins. In general, ligand binding of these receptors leads to GTP loading and activation of the small GTPase Ras, which recruits Raf to the membrane where it is activated. Raf subsequently phosphorylates the dual specificity MAP/ERK kinase (MEK1/2) which in turn phosphorylates and thereby activates ERK. ERK is a promiscuous kinase and can phosphorylate more than 100 different substrates. Therefore activation of ERK can affect a broad array of cellular functions including proliferation, survival, apoptosis, motility, transcription, metabolism and differentiation. ERK activity is controlled by many distinct mechanisms. Scaffold proteins control when and where ERK is activated while anchoring proteins can restrain ERK localization to specific subcellular compartments. Meanwhile, phosphatases dephosphorylate and inactivate ERK thereby shutting off the pathway. Finally, several feedback mechanisms have been identified downstream of ERK activation. Here we will focus on the diverse mechanisms of ERK regulation in mammalian cells.
19052640 The N-terminal domain of ERK1 accounts for the functional differences with ERK2. The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and 2 to generate an overall signalling output.
19060905 A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. The extracellular-regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) have a crucial role in cardiac hypertrophy. ERK1/2 is activated by mitogen-activated protein kinase kinase-1 (MEK1) and MEK2 (commonly referred to as MEK1/2)-dependent phosphorylation in the TEY motif of the activation loop, but how ERK1/2 is targeted toward specific substrates is not well understood. Here we show that autophosphorylation of ERK1/2 on Thr188 directs ERK1/2 to phosphorylate nuclear targets known to cause cardiac hypertrophy. Thr188 autophosphorylation requires the activation and assembly of the entire Raf-MEK-ERK kinase cascade, phosphorylation of the TEY motif, dimerization of ERK1/2 and binding to G protein betagamma subunits released from activated G(q). Thr188 phosphorylation of ERK1/2 was observed in isolated cardiomyocytes induced to undergo hypertrophic growth, in mice upon stimulation of G(q)-coupled receptors or after aortic banding and in failing human hearts. Experiments using transgenic mouse models carrying mutations at the Thr188 phosphorylation site of ERK2 suggested a causal relationship to cardiac hypertrophy. We propose that specific phosphorylation events on ERK1/2 integrate differing upstream signals (Raf1-MEK1/2 or G protein-coupled receptor-G(q)) to induce cardiac hypertrophy.
19242111 Total ERK1/2 activity regulates cell proliferation. Regulating ERK activity is essential for normal cell proliferation to occur. In mammals and most vertebrates ERK activity is provided by ERK1 and ERK2 that are highly similar, ubiquitously expressed and share activators and substrates. By combining single and double silencings of ERK1 and ERK2 we recently demonstrated that the apparent dominant role of ERK2 to regulate cell proliferation was due to its markedly higher expression level than ERK1. The contribution of ERK1 was revealed when ERK2 activation was clamped to avoid compensating over-activation of ERK2. We found no evidences in the literature for insulated isoform-specific modules in the Ras/Raf/MEK signaling cascade that could activate specifically ERK1 or ERK2. Obviously in frogs all signal integration and fine modulation provided by three Ras and three Raf isoforms is conducted by only one MEK and one ERK isoform. In mammals, ERK1 and ERK2 display similar specific activities and are activated respectively to their expression levels. After integrating signals from Ras, Raf and MEK isoforms, ERK1 and ERK2 regulate positively cell proliferation according to their expression levels.
19244124 Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy. The mitogen-activated protein kinase (MAPK) signal transduction pathway plays a central role in regulating tumor cell growth, survival, differentiation, and angiogenesis. The key components of the Ras/Raf/MEK/ERK signal module are frequently altered in human cancers. Targeting this pathway represents a promising anticancer strategy. Small molecule inhibitors targeting MEK1/2 have shown promise in the clinic; however, ultimate clinical proof-of-concept remains elusive. Here, we report a potent and highly selective non-ATP-competitive MEK1/2 inhibitor, RO4927350, with a novel chemical structure and unique mechanism of action. It selectively blocks the MAPK pathway signaling both in vitro and in vivo, which results in significant antitumor efficacy in a broad spectrum of tumor models. Compared with previously reported MEK inhibitors, RO4927350 inhibits not only ERK1/2 but also MEK1/2 phosphorylation. In cancer cells, high basal levels of phospho-MEK1/2 rather than phospho-ERK1/2 seem to correlate with greater sensitivity to RO4927350. Furthermore, RO4927350 prevents a feedback increase in MEK phosphorylation, which has been observed with other MEK inhibitors. We show that B-Raf rather than C-Raf plays a critical role in the feedback regulation. The unique MAPK signaling blockade mediated by RO4927350 in cancer may reduce the risk of developing drug resistance. Thus, RO4927350 represents a novel therapeutic modality in cancers with aberrant MAPK pathway activation.
19414607 Erk1/2 MAP kinases are required for epidermal G2/M progression. Erk1/2 mitogen-activated protein kinases (MAPKs) are often hyperactivated in human cancers, where they affect multiple processes, including proliferation. However, the effects of Erk1/2 loss in normal epithelial tissue, the setting of most extracellular signal-regulated kinase (Erk)-associated neoplasms, are unknown. In epidermis, loss of Erk1 or Erk2 individually has no effect, whereas simultaneous Erk1/2 depletion inhibits cell division, demonstrating that these MAPKs are necessary for normal tissue self-renewal. Growth inhibition caused by Erk1/2 loss is rescued by reintroducing Erk2, but not by activating Erk effectors that promote G1 cell cycle progression. Unlike fibroblasts, in which Erk1/2 loss decreases cyclin D1 expression and induces G1/S arrest, Erk1/2 loss in epithelial cells reduces cyclin B1 and c-Fos expression and induces G2/M arrest while disrupting a gene regulatory network centered on cyclin B1-Cdc2. Thus, the cell cycle stages at which Erk1/2 activity is required vary by cell type, with Erk1/2 functioning in epithelial cells to enable progression through G2/M.
19805545 Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. Kinase activity is known as the key biochemical property of MAPKs. Here, we report that ERK1/2 also utilizes its noncatalytic function to mediate certain signal transductions. Sustained activation of the Raf/MEK/ERK pathway induces growth arrest, accompanied by changes in cell cycle regulators (decreased retinoblastoma phosphorylation, E2F1 down-regulation, and/or p21(CIP1) up-regulation) and cell type-specific changes in morphology and expression of c-Myc or RET in the human tumor lines LNCaP, U251, and TT. Ablation of ERK1/2 by RNA interference abrogated all these effects. However, active site-disabled ERK mutants (ERK1-K71R, ERK2-K52R, and ERK2-D147A), which competitively inhibit activation of endogenous ERK1/2, could not block Raf/MEK-induced growth arrest as well as changes in the cell cycle regulators, although they effectively blocked phosphorylation of the ERK1/2 catalytic activity readouts, p90(RSK) and ELK1, as well as the cell type-specific changes. Because this indicated a potential noncatalytic ERK1/2 function, we generated stable lines of the tumor cells in which both ERK1 and ERK2 were significantly knocked down, and we further investigated the possibility using rat-derived kinase-deficient ERK mutants (ERK2-K52R and ERK2-T183A/Y185F) that were not targeted by human small hairpin RNA. Indeed, ERK2-K52R selectively restored Raf-induced growth inhibitory signaling in ERK1/2-depleted cells, as manifested by regained cellular ability to undergo growth arrest and to control the cell cycle regulators without affecting c-Myc and morphology. However, ERK2-T183A/Y185F was less effective, indicating the requirement of TEY site phosphorylation. Our study suggests that functions of ERK1/2 other than its "canonical" kinase activity are also involved in the pathway-mediated growth arrest signaling.
19816936 RNAi-mediated MEK1 knock-down prevents ERK1/2 activation and abolishes human hepatocarcinoma growth in vitro and in vivo. The mitogen-activated protein kinases MEK/ERK pathway regulates fundamental processes in malignant cells and represents an attractive target in the development of new cancer treatments especially for human hepatocarcinoma highly resistant to chemotherapy. Although gene extinction experiments have suggested distinct roles for these proteins, the MEK/ERK cascade remains widely considered as exhibiting an overlap of functions. To investigate the functionality of each kinase in tumorigenesis, we have generated stably knock-down clones for MEK1/2 and ERK1/2 isoforms in the human hepatocellular carcinoma line HuH7. Our results have shown that RNAi strategy allows a specific disruption of the targeted kinases and argued for the critical function of MEK1 in liver tumor growth. Transient and stable extinction experiments demonstrated that MEK1 isoform acts as a major element in the signal transduction by phosphorylating ERK1 and ERK2 after growth factors stimulation, whereas oncogenic level of ERK1/2 phosphorylation appears to be MEK1 and MEK2 dependent in basal condition. In addition, silencing of MEK1 or ERK2 abolished cell proliferation and DNA replication in vitro as well as tumor growth in vivo after injection in rodent. In contrast, targeting MEK2 or ERK1 had no effect on hepatocarcinoma progression. These results strongly corroborate the relevance of targeting the MEK cascade as attested by pharmacologic drugs and support the potential application of RNAi in future development of more effective cancer therapies. Our study emphasizes the importance of the MEK/ERK pathway in human hepatocarcinoma cell growth and argues for a crucial role of MEK1 and ERK2 in this regulation.