-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathdev.rs
1092 lines (978 loc) · 38.5 KB
/
dev.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Tools for developing circuits.
use std::collections::HashMap;
use std::collections::HashSet;
use std::fmt;
use std::iter;
use std::ops::{Add, Mul, Neg, Range};
use ff::Field;
use crate::plonk::Assigned;
use crate::{
arithmetic::{FieldExt, Group},
circuit,
plonk::{
permutation, Advice, Any, Assignment, Circuit, Column, ColumnType, ConstraintSystem, Error,
Expression, Fixed, FloorPlanner, Instance, Selector, VirtualCell,
},
poly::Rotation,
};
pub mod metadata;
mod util;
mod failure;
pub use failure::{FailureLocation, VerifyFailure};
pub mod cost;
pub use cost::CircuitCost;
mod gates;
pub use gates::CircuitGates;
#[cfg(feature = "dev-graph")]
mod graph;
#[cfg(feature = "dev-graph")]
#[cfg_attr(docsrs, doc(cfg(feature = "dev-graph")))]
pub use graph::{circuit_dot_graph, layout::CircuitLayout};
#[derive(Debug)]
struct Region {
/// The name of the region. Not required to be unique.
name: String,
/// The columns involved in this region.
columns: HashSet<Column<Any>>,
/// The rows that this region starts and ends on, if known.
rows: Option<(usize, usize)>,
/// The selectors that have been enabled in this region. All other selectors are by
/// construction not enabled.
enabled_selectors: HashMap<Selector, Vec<usize>>,
/// The cells assigned in this region. We store this as a `Vec` so that if any cells
/// are double-assigned, they will be visibly darker.
cells: Vec<(Column<Any>, usize)>,
}
impl Region {
fn update_extent(&mut self, column: Column<Any>, row: usize) {
self.columns.insert(column);
// The region start is the earliest row assigned to.
// The region end is the latest row assigned to.
let (mut start, mut end) = self.rows.unwrap_or((row, row));
if row < start {
// The first row assigned was not at start 0 within the region.
start = row;
}
if row > end {
end = row;
}
self.rows = Some((start, end));
}
}
/// The value of a particular cell within the circuit.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum CellValue<F: Group + Field> {
// An unassigned cell.
Unassigned,
// A cell that has been assigned a value.
Assigned(F),
// A unique poisoned cell.
Poison(usize),
}
/// A value within an expression.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)]
enum Value<F: Group + Field> {
Real(F),
Poison,
}
impl<F: Group + Field> From<CellValue<F>> for Value<F> {
fn from(value: CellValue<F>) -> Self {
match value {
// Cells that haven't been explicitly assigned to, default to zero.
CellValue::Unassigned => Value::Real(F::zero()),
CellValue::Assigned(v) => Value::Real(v),
CellValue::Poison(_) => Value::Poison,
}
}
}
impl<F: Group + Field> Neg for Value<F> {
type Output = Self;
fn neg(self) -> Self::Output {
match self {
Value::Real(a) => Value::Real(-a),
_ => Value::Poison,
}
}
}
impl<F: Group + Field> Add for Value<F> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
match (self, rhs) {
(Value::Real(a), Value::Real(b)) => Value::Real(a + b),
_ => Value::Poison,
}
}
}
impl<F: Group + Field> Mul for Value<F> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
match (self, rhs) {
(Value::Real(a), Value::Real(b)) => Value::Real(a * b),
// If poison is multiplied by zero, then we treat the poison as unconstrained
// and we don't propagate it.
(Value::Real(x), Value::Poison) | (Value::Poison, Value::Real(x))
if x.is_zero_vartime() =>
{
Value::Real(F::zero())
}
_ => Value::Poison,
}
}
}
impl<F: Group + Field> Mul<F> for Value<F> {
type Output = Self;
fn mul(self, rhs: F) -> Self::Output {
match self {
Value::Real(lhs) => Value::Real(lhs * rhs),
// If poison is multiplied by zero, then we treat the poison as unconstrained
// and we don't propagate it.
Value::Poison if rhs.is_zero_vartime() => Value::Real(F::zero()),
_ => Value::Poison,
}
}
}
/// A test prover for debugging circuits.
///
/// The normal proving process, when applied to a buggy circuit implementation, might
/// return proofs that do not validate when they should, but it can't indicate anything
/// other than "something is invalid". `MockProver` can be used to figure out _why_ these
/// are invalid: it stores all the private inputs along with the circuit internals, and
/// then checks every constraint manually.
///
/// # Examples
///
/// ```
/// use halo2_proofs::{
/// arithmetic::FieldExt,
/// circuit::{Layouter, SimpleFloorPlanner, Value},
/// dev::{FailureLocation, MockProver, VerifyFailure},
/// pasta::Fp,
/// plonk::{Advice, Any, Circuit, Column, ConstraintSystem, Error, Selector},
/// poly::Rotation,
/// };
/// const K: u32 = 5;
///
/// #[derive(Copy, Clone)]
/// struct MyConfig {
/// a: Column<Advice>,
/// b: Column<Advice>,
/// c: Column<Advice>,
/// s: Selector,
/// }
///
/// #[derive(Clone, Default)]
/// struct MyCircuit {
/// a: Value<u64>,
/// b: Value<u64>,
/// }
///
/// impl<F: FieldExt> Circuit<F> for MyCircuit {
/// type Config = MyConfig;
/// type FloorPlanner = SimpleFloorPlanner;
///
/// fn without_witnesses(&self) -> Self {
/// Self::default()
/// }
///
/// fn configure(meta: &mut ConstraintSystem<F>) -> MyConfig {
/// let a = meta.advice_column();
/// let b = meta.advice_column();
/// let c = meta.advice_column();
/// let s = meta.selector();
///
/// meta.create_gate("R1CS constraint", |meta| {
/// let a = meta.query_advice(a, Rotation::cur());
/// let b = meta.query_advice(b, Rotation::cur());
/// let c = meta.query_advice(c, Rotation::cur());
/// let s = meta.query_selector(s);
///
/// // BUG: Should be a * b - c
/// Some(("buggy R1CS", s * (a * b + c)))
/// });
///
/// MyConfig { a, b, c, s }
/// }
///
/// fn synthesize(&self, config: MyConfig, mut layouter: impl Layouter<F>) -> Result<(), Error> {
/// layouter.assign_region(|| "Example region", |mut region| {
/// config.s.enable(&mut region, 0)?;
/// region.assign_advice(|| "a", config.a, 0, || {
/// self.a.map(F::from)
/// })?;
/// region.assign_advice(|| "b", config.b, 0, || {
/// self.b.map(F::from)
/// })?;
/// region.assign_advice(|| "c", config.c, 0, || {
/// (self.a * self.b).map(F::from)
/// })?;
/// Ok(())
/// })
/// }
/// }
///
/// // Assemble the private inputs to the circuit.
/// let circuit = MyCircuit {
/// a: Value::known(2),
/// b: Value::known(4),
/// };
///
/// // This circuit has no public inputs.
/// let instance = vec![];
///
/// let prover = MockProver::<Fp>::run(K, &circuit, instance).unwrap();
/// assert_eq!(
/// prover.verify(),
/// Err(vec![VerifyFailure::ConstraintNotSatisfied {
/// constraint: ((0, "R1CS constraint").into(), 0, "buggy R1CS").into(),
/// location: FailureLocation::InRegion {
/// region: (0, "Example region").into(),
/// offset: 0,
/// },
/// cell_values: vec![
/// (((Any::Advice, 0).into(), 0).into(), "0x2".to_string()),
/// (((Any::Advice, 1).into(), 0).into(), "0x4".to_string()),
/// (((Any::Advice, 2).into(), 0).into(), "0x8".to_string()),
/// ],
/// }])
/// );
///
/// // If we provide a too-small K, we get an error.
/// assert!(matches!(
/// MockProver::<Fp>::run(2, &circuit, vec![]).unwrap_err(),
/// Error::NotEnoughRowsAvailable {
/// current_k,
/// } if current_k == 2,
/// ));
/// ```
#[derive(Debug)]
pub struct MockProver<F: Group + Field> {
k: u32,
n: u32,
cs: ConstraintSystem<F>,
/// The regions in the circuit.
regions: Vec<Region>,
/// The current region being assigned to. Will be `None` after the circuit has been
/// synthesized.
current_region: Option<Region>,
// The fixed cells in the circuit, arranged as [column][row].
fixed: Vec<Vec<CellValue<F>>>,
// The advice cells in the circuit, arranged as [column][row].
advice: Vec<Vec<CellValue<F>>>,
// The instance cells in the circuit, arranged as [column][row].
instance: Vec<Vec<F>>,
selectors: Vec<Vec<bool>>,
permutation: permutation::keygen::Assembly,
// A range of available rows for assignment and copies.
usable_rows: Range<usize>,
}
impl<F: Field + Group> Assignment<F> for MockProver<F> {
fn enter_region<NR, N>(&mut self, name: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
assert!(self.current_region.is_none());
self.current_region = Some(Region {
name: name().into(),
columns: HashSet::default(),
rows: None,
enabled_selectors: HashMap::default(),
cells: vec![],
});
}
fn exit_region(&mut self) {
self.regions.push(self.current_region.take().unwrap());
}
fn enable_selector<A, AR>(&mut self, _: A, selector: &Selector, row: usize) -> Result<(), Error>
where
A: FnOnce() -> AR,
AR: Into<String>,
{
if !self.usable_rows.contains(&row) {
return Err(Error::not_enough_rows_available(self.k));
}
// Track that this selector was enabled. We require that all selectors are enabled
// inside some region (i.e. no floating selectors).
self.current_region
.as_mut()
.unwrap()
.enabled_selectors
.entry(*selector)
.or_default()
.push(row);
self.selectors[selector.0][row] = true;
Ok(())
}
fn query_instance(
&self,
column: Column<Instance>,
row: usize,
) -> Result<circuit::Value<F>, Error> {
if !self.usable_rows.contains(&row) {
return Err(Error::not_enough_rows_available(self.k));
}
self.instance
.get(column.index())
.and_then(|column| column.get(row))
.map(|v| circuit::Value::known(*v))
.ok_or(Error::BoundsFailure)
}
fn assign_advice<V, VR, A, AR>(
&mut self,
_: A,
column: Column<Advice>,
row: usize,
to: V,
) -> Result<(), Error>
where
V: FnOnce() -> circuit::Value<VR>,
VR: Into<Assigned<F>>,
A: FnOnce() -> AR,
AR: Into<String>,
{
if !self.usable_rows.contains(&row) {
return Err(Error::not_enough_rows_available(self.k));
}
if let Some(region) = self.current_region.as_mut() {
region.update_extent(column.into(), row);
region.cells.push((column.into(), row));
}
*self
.advice
.get_mut(column.index())
.and_then(|v| v.get_mut(row))
.ok_or(Error::BoundsFailure)? =
CellValue::Assigned(to().into_field().evaluate().assign()?);
Ok(())
}
fn assign_fixed<V, VR, A, AR>(
&mut self,
_: A,
column: Column<Fixed>,
row: usize,
to: V,
) -> Result<(), Error>
where
V: FnOnce() -> circuit::Value<VR>,
VR: Into<Assigned<F>>,
A: FnOnce() -> AR,
AR: Into<String>,
{
if !self.usable_rows.contains(&row) {
return Err(Error::not_enough_rows_available(self.k));
}
if let Some(region) = self.current_region.as_mut() {
region.update_extent(column.into(), row);
region.cells.push((column.into(), row));
}
*self
.fixed
.get_mut(column.index())
.and_then(|v| v.get_mut(row))
.ok_or(Error::BoundsFailure)? =
CellValue::Assigned(to().into_field().evaluate().assign()?);
Ok(())
}
fn copy(
&mut self,
left_column: Column<Any>,
left_row: usize,
right_column: Column<Any>,
right_row: usize,
) -> Result<(), crate::plonk::Error> {
if !self.usable_rows.contains(&left_row) || !self.usable_rows.contains(&right_row) {
return Err(Error::not_enough_rows_available(self.k));
}
self.permutation
.copy(left_column, left_row, right_column, right_row)
}
fn fill_from_row(
&mut self,
col: Column<Fixed>,
from_row: usize,
to: circuit::Value<Assigned<F>>,
) -> Result<(), Error> {
if !self.usable_rows.contains(&from_row) {
return Err(Error::not_enough_rows_available(self.k));
}
for row in self.usable_rows.clone().skip(from_row) {
self.assign_fixed(|| "", col, row, || to)?;
}
Ok(())
}
fn push_namespace<NR, N>(&mut self, _: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
// TODO: Do something with namespaces :)
}
fn pop_namespace(&mut self, _: Option<String>) {
// TODO: Do something with namespaces :)
}
}
impl<F: FieldExt> MockProver<F> {
/// Runs a synthetic keygen-and-prove operation on the given circuit, collecting data
/// about the constraints and their assignments.
pub fn run<ConcreteCircuit: Circuit<F>>(
k: u32,
circuit: &ConcreteCircuit,
instance: Vec<Vec<F>>,
) -> Result<Self, Error> {
let n = 1 << k;
let mut cs = ConstraintSystem::default();
let config = ConcreteCircuit::configure(&mut cs);
let cs = cs;
if n < cs.minimum_rows() {
return Err(Error::not_enough_rows_available(k));
}
if instance.len() != cs.num_instance_columns {
return Err(Error::InvalidInstances);
}
let instance = instance
.into_iter()
.map(|mut instance| {
if instance.len() > n - (cs.blinding_factors() + 1) {
return Err(Error::InstanceTooLarge);
}
instance.resize(n, F::zero());
Ok(instance)
})
.collect::<Result<Vec<_>, _>>()?;
// Fixed columns contain no blinding factors.
let fixed = vec![vec![CellValue::Unassigned; n]; cs.num_fixed_columns];
let selectors = vec![vec![false; n]; cs.num_selectors];
// Advice columns contain blinding factors.
let blinding_factors = cs.blinding_factors();
let usable_rows = n - (blinding_factors + 1);
let advice = vec![
{
let mut column = vec![CellValue::Unassigned; n];
// Poison unusable rows.
for (i, cell) in column.iter_mut().enumerate().skip(usable_rows) {
*cell = CellValue::Poison(i);
}
column
};
cs.num_advice_columns
];
let permutation = permutation::keygen::Assembly::new(n, &cs.permutation);
let constants = cs.constants.clone();
let mut prover = MockProver {
k,
n: n as u32,
cs,
regions: vec![],
current_region: None,
fixed,
advice,
instance,
selectors,
permutation,
usable_rows: 0..usable_rows,
};
ConcreteCircuit::FloorPlanner::synthesize(&mut prover, circuit, config, constants)?;
let (cs, selector_polys) = prover.cs.compress_selectors(prover.selectors.clone());
prover.cs = cs;
prover.fixed.extend(selector_polys.into_iter().map(|poly| {
let mut v = vec![CellValue::Unassigned; n];
for (v, p) in v.iter_mut().zip(&poly[..]) {
*v = CellValue::Assigned(*p);
}
v
}));
Ok(prover)
}
/// Returns `Ok(())` if this `MockProver` is satisfied, or a list of errors indicating
/// the reasons that the circuit is not satisfied.
pub fn verify(&self) -> Result<(), Vec<VerifyFailure>> {
let n = self.n as i32;
// Check that within each region, all cells used in instantiated gates have been
// assigned to.
let selector_errors = self.regions.iter().enumerate().flat_map(|(r_i, r)| {
r.enabled_selectors.iter().flat_map(move |(selector, at)| {
// Find the gates enabled by this selector
self.cs
.gates
.iter()
// Assume that if a queried selector is enabled, the user wants to use the
// corresponding gate in some way.
//
// TODO: This will trip up on the reverse case, where leaving a selector
// un-enabled keeps a gate enabled. We could alternatively require that
// every selector is explicitly enabled or disabled on every row? But that
// seems messy and confusing.
.enumerate()
.filter(move |(_, g)| g.queried_selectors().contains(selector))
.flat_map(move |(gate_index, gate)| {
at.iter().flat_map(move |selector_row| {
// Selectors are queried with no rotation.
let gate_row = *selector_row as i32;
gate.queried_cells().iter().filter_map(move |cell| {
// Determine where this cell should have been assigned.
let cell_row = ((gate_row + n + cell.rotation.0) % n) as usize;
// Check that it was assigned!
if r.cells.contains(&(cell.column, cell_row)) {
None
} else {
Some(VerifyFailure::CellNotAssigned {
gate: (gate_index, gate.name()).into(),
region: (r_i, r.name.clone()).into(),
gate_offset: *selector_row,
column: cell.column,
offset: cell_row as isize - r.rows.unwrap().0 as isize,
})
}
})
})
})
})
});
// Check that all gates are satisfied for all rows.
let gate_errors =
self.cs
.gates
.iter()
.enumerate()
.flat_map(|(gate_index, gate)| {
// We iterate from n..2n so we can just reduce to handle wrapping.
(n..(2 * n)).flat_map(move |row| {
gate.polynomials().iter().enumerate().filter_map(
move |(poly_index, poly)| match poly.evaluate(
&|scalar| Value::Real(scalar),
&|_| panic!("virtual selectors are removed during optimization"),
&util::load(n, row, &self.cs.fixed_queries, &self.fixed),
&util::load(n, row, &self.cs.advice_queries, &self.advice),
&util::load_instance(
n,
row,
&self.cs.instance_queries,
&self.instance,
),
&|a| -a,
&|a, b| a + b,
&|a, b| a * b,
&|a, scalar| a * scalar,
) {
Value::Real(x) if x.is_zero_vartime() => None,
Value::Real(_) => Some(VerifyFailure::ConstraintNotSatisfied {
constraint: (
(gate_index, gate.name()).into(),
poly_index,
gate.constraint_name(poly_index),
)
.into(),
location: FailureLocation::find_expressions(
&self.cs,
&self.regions,
(row - n) as usize,
Some(poly).into_iter(),
),
cell_values: util::cell_values(
gate,
poly,
&util::load(n, row, &self.cs.fixed_queries, &self.fixed),
&util::load(n, row, &self.cs.advice_queries, &self.advice),
&util::load_instance(
n,
row,
&self.cs.instance_queries,
&self.instance,
),
),
}),
Value::Poison => Some(VerifyFailure::ConstraintPoisoned {
constraint: (
(gate_index, gate.name()).into(),
poly_index,
gate.constraint_name(poly_index),
)
.into(),
}),
},
)
})
});
// Check that all lookups exist in their respective tables.
let lookup_errors =
self.cs
.lookups
.iter()
.enumerate()
.flat_map(|(lookup_index, lookup)| {
let load = |expression: &Expression<F>, row| {
expression.evaluate(
&|scalar| Value::Real(scalar),
&|_| panic!("virtual selectors are removed during optimization"),
&|index, _, _| {
let query = self.cs.fixed_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
self.fixed[column_index]
[(row as i32 + n + rotation) as usize % n as usize]
.into()
},
&|index, _, _| {
let query = self.cs.advice_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
self.advice[column_index]
[(row as i32 + n + rotation) as usize % n as usize]
.into()
},
&|index, _, _| {
let query = self.cs.instance_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
Value::Real(
self.instance[column_index]
[(row as i32 + n + rotation) as usize % n as usize],
)
},
&|a| -a,
&|a, b| a + b,
&|a, b| a * b,
&|a, scalar| a * scalar,
)
};
assert!(lookup.table_expressions.len() == lookup.input_expressions.len());
assert!(self.usable_rows.end > 0);
// We optimize on the basis that the table might have been filled so that the last
// usable row now has the fill contents (it doesn't matter if there was no filling).
// Note that this "fill row" necessarily exists in the table, and we use that fact to
// slightly simplify the optimization: we're only trying to check that all input rows
// are contained in the table, and so we can safely just drop input rows that
// match the fill row.
let fill_row: Vec<_> = lookup
.table_expressions
.iter()
.map(move |c| load(c, self.usable_rows.end - 1))
.collect();
// In the real prover, the lookup expressions are never enforced on
// unusable rows, due to the (1 - (l_last(X) + l_blind(X))) term.
let mut table: Vec<Vec<_>> = self
.usable_rows
.clone()
.filter_map(|table_row| {
let t = lookup
.table_expressions
.iter()
.map(move |c| load(c, table_row))
.collect();
if t != fill_row {
Some(t)
} else {
None
}
})
.collect();
table.sort_unstable();
let mut inputs: Vec<(Vec<_>, usize)> = self
.usable_rows
.clone()
.filter_map(|input_row| {
let t = lookup
.input_expressions
.iter()
.map(move |c| load(c, input_row))
.collect();
if t != fill_row {
// Also keep track of the original input row, since we're going to sort.
Some((t, input_row))
} else {
None
}
})
.collect();
inputs.sort_unstable();
let mut i = 0;
inputs
.iter()
.filter_map(move |(input, input_row)| {
while i < table.len() && &table[i] < input {
i += 1;
}
if i == table.len() || &table[i] > input {
assert!(table.binary_search(input).is_err());
Some(VerifyFailure::Lookup {
lookup_index,
location: FailureLocation::find_expressions(
&self.cs,
&self.regions,
*input_row,
lookup.input_expressions.iter(),
),
})
} else {
None
}
})
.collect::<Vec<_>>()
});
// Check that permutations preserve the original values of the cells.
let perm_errors = {
// Original values of columns involved in the permutation.
let original = |column, row| {
self.cs
.permutation
.get_columns()
.get(column)
.map(|c: &Column<Any>| match c.column_type() {
Any::Advice => self.advice[c.index()][row],
Any::Fixed => self.fixed[c.index()][row],
Any::Instance => CellValue::Assigned(self.instance[c.index()][row]),
})
.unwrap()
};
// Iterate over each column of the permutation
self.permutation
.mapping
.iter()
.enumerate()
.flat_map(move |(column, values)| {
// Iterate over each row of the column to check that the cell's
// value is preserved by the mapping.
values.iter().enumerate().filter_map(move |(row, cell)| {
let original_cell = original(column, row);
let permuted_cell = original(cell.0, cell.1);
if original_cell == permuted_cell {
None
} else {
let columns = self.cs.permutation.get_columns();
let column = columns.get(column).unwrap();
Some(VerifyFailure::Permutation {
column: (*column).into(),
location: FailureLocation::find(
&self.regions,
row,
Some(column).into_iter().cloned().collect(),
),
})
}
})
})
};
let mut errors: Vec<_> = iter::empty()
.chain(selector_errors)
.chain(gate_errors)
.chain(lookup_errors)
.chain(perm_errors)
.collect();
if errors.is_empty() {
Ok(())
} else {
// Remove any duplicate `ConstraintPoisoned` errors (we check all unavailable
// rows in case the trigger is row-specific, but the error message only points
// at the constraint).
errors.dedup_by(|a, b| match (a, b) {
(
a @ VerifyFailure::ConstraintPoisoned { .. },
b @ VerifyFailure::ConstraintPoisoned { .. },
) => a == b,
_ => false,
});
Err(errors)
}
}
/// Panics if the circuit being checked by this `MockProver` is not satisfied.
///
/// Any verification failures will be pretty-printed to stderr before the function
/// panics.
///
/// Apart from the stderr output, this method is equivalent to:
/// ```ignore
/// assert_eq!(prover.verify(), Ok(()));
/// ```
pub fn assert_satisfied(&self) {
if let Err(errs) = self.verify() {
for err in errs {
err.emit(self);
eprintln!();
}
panic!("circuit was not satisfied");
}
}
}
#[cfg(test)]
mod tests {
use pasta_curves::Fp;
use super::{FailureLocation, MockProver, VerifyFailure};
use crate::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{
Advice, Any, Circuit, Column, ConstraintSystem, Error, Expression, Selector,
TableColumn,
},
poly::Rotation,
};
#[test]
fn unassigned_cell() {
const K: u32 = 4;
#[derive(Clone)]
struct FaultyCircuitConfig {
a: Column<Advice>,
q: Selector,
}
struct FaultyCircuit {}
impl Circuit<Fp> for FaultyCircuit {
type Config = FaultyCircuitConfig;
type FloorPlanner = SimpleFloorPlanner;
fn configure(meta: &mut ConstraintSystem<Fp>) -> Self::Config {
let a = meta.advice_column();
let b = meta.advice_column();
let q = meta.selector();
meta.create_gate("Equality check", |cells| {
let a = cells.query_advice(a, Rotation::prev());
let b = cells.query_advice(b, Rotation::cur());
let q = cells.query_selector(q);
// If q is enabled, a and b must be assigned to.
vec![q * (a - b)]
});
FaultyCircuitConfig { a, q }
}
fn without_witnesses(&self) -> Self {
Self {}
}
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
layouter.assign_region(
|| "Faulty synthesis",
|mut region| {
// Enable the equality gate.
config.q.enable(&mut region, 1)?;
// Assign a = 0.
region.assign_advice(|| "a", config.a, 0, || Value::known(Fp::zero()))?;
// BUG: Forget to assign b = 0! This could go unnoticed during
// development, because cell values default to zero, which in this
// case is fine, but for other assignments would be broken.
Ok(())
},
)
}
}
let prover = MockProver::run(K, &FaultyCircuit {}, vec![]).unwrap();
assert_eq!(
prover.verify(),
Err(vec![VerifyFailure::CellNotAssigned {
gate: (0, "Equality check").into(),
region: (0, "Faulty synthesis".to_owned()).into(),
gate_offset: 1,
column: Column::new(1, Any::Advice),
offset: 1,
}])
);
}
#[test]
fn bad_lookup() {
const K: u32 = 4;
#[derive(Clone)]
struct FaultyCircuitConfig {
a: Column<Advice>,
q: Selector,
table: TableColumn,
}
struct FaultyCircuit {}
impl Circuit<Fp> for FaultyCircuit {
type Config = FaultyCircuitConfig;
type FloorPlanner = SimpleFloorPlanner;
fn configure(meta: &mut ConstraintSystem<Fp>) -> Self::Config {
let a = meta.advice_column();
let q = meta.complex_selector();
let table = meta.lookup_table_column();
meta.lookup(|cells| {
let a = cells.query_advice(a, Rotation::cur());
let q = cells.query_selector(q);
// If q is enabled, a must be in the table.
// When q is not enabled, lookup the default value instead.
let not_q = Expression::Constant(Fp::one()) - q.clone();
let default = Expression::Constant(Fp::from(2));
vec![(q * a + not_q * default, table)]
});
FaultyCircuitConfig { a, q, table }
}