-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
150 lines (124 loc) · 5.87 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import logging as log
from openvino.inference_engine import IENetwork, IECore, IEPlugin
class Network:
"""
Load and configure inference plugins for the specified target devices
and performs synchronous and asynchronous modes for the specified infer requests.
"""
def __init__(self):
### TODO: Initialize any class variables desired ###
self.net = None
self.plugin = None
self.input_blob = None
self.out_blob = None
self.net_plugin = None
self.infer_request_handle = None
def load_model(self, model, device, input_size, output_size, num_requests, cpu_extension=None, plugin=None):
### TODO: Load the model ###
### TODO: Check for supported layers ###
### TODO: Add any necessary extensions ###
### TODO: Return the loaded inference plugin ###
### Note: You may need to update the function parameters. ###
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Plugin initialization for specified device
# and load extensions library if specified
if not plugin:
log.info("Initializing plugin for {} device...".format(device))
self.plugin = IEPlugin(device=device)
else:
self.plugin = plugin
if cpu_extension and 'CPU' in device:
self.plugin.add_cpu_extension(cpu_extension)
# Read IR
log.info("Reading IR...")
self.net = IENetwork(model=model_xml, weights=model_bin)
log.info("Loading IR to the plugin...")
if self.plugin.device == "CPU":
supported_layers = self.plugin.get_supported_layers(self.net)
not_supported_layers = \
[l for l in self.net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by "
"the plugin for specified device {}:\n {}".
format(self.plugin.device,
', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path"
" in command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
if num_requests == 0:
# Loads network read from IR to the plugin
self.net_plugin = self.plugin.load(network=self.net)
else:
self.net_plugin = self.plugin.load(network=self.net, num_requests=num_requests)
self.input_blob = next(iter(self.net.inputs))
self.out_blob = next(iter(self.net.outputs))
assert len(self.net.inputs.keys()) == input_size, \
"Supports only {} input topologies".format(len(self.net.inputs))
assert len(self.net.outputs) == output_size, \
"Supports only {} output topologies".format(len(self.net.outputs))
return self.plugin, self.get_input_shape()
def get_input_shape(self):
### TODO: Return the shape of the input layer ###
return self.net.inputs[self.input_blob].shape
def exec_net(self, request_id, frame):
### TODO: Start an asynchronous request ###
### TODO: Return any necessary information ###
### Note: You may need to update the function parameters. ###
self.infer_request_handle = self.net_plugin.start_async(
request_id=request_id, inputs={self.input_blob: frame})
return self.net_plugin
def wait(self, request_id):
### TODO: Wait for the request to be complete. ###
### TODO: Return any necessary information ###
### Note: You may need to update the function parameters. ###
wait_process = self.net_plugin.requests[request_id].wait(-1)
return wait_process
def get_output(self, request_id, output=None):
### TODO: Extract and return the output results
### Note: You may need to update the function parameters. ###
if output:
res = self.infer_request_handle.outputs[output]
else:
res = self.net_plugin.requests[request_id].outputs[self.out_blob]
return res
def performance_counter(self, request_id):
"""
Queries performance measures per layer to get feedback of what is the
most time consuming layer.
:param request_id: Index of Infer request value. Limited to device capabilities
:return: Performance of the layer
"""
perf_count = self.net_plugin.requests[request_id].get_perf_counts()
return perf_count
def clean(self):
"""
Deletes all the instances
:return: None
"""
del self.net_plugin
del self.plugin
del self.net