-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbig_endian_unittest.cc
266 lines (241 loc) · 8.42 KB
/
big_endian_unittest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/big_endian.h"
#include <stdint.h>
#include <limits>
#include "base/strings/string_piece.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
TEST(ReadBigEndianTest, ReadSignedPositive) {
uint8_t data[] = {0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x1A, 0x2A};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(0x0A, s8);
EXPECT_EQ(0x0A0B, s16);
EXPECT_EQ(int32_t{0x0A0B0C0D}, s32);
EXPECT_EQ(int64_t{0x0A0B0C0D0E0F1A2All}, s64);
}
TEST(ReadBigEndianTest, ReadSignedNegative) {
uint8_t data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
int8_t s8 = 0;
int16_t s16 = 0;
int32_t s32 = 0;
int64_t s64 = 0;
ReadBigEndian(data, &s8);
ReadBigEndian(data, &s16);
ReadBigEndian(data, &s32);
ReadBigEndian(data, &s64);
EXPECT_EQ(-1, s8);
EXPECT_EQ(-1, s16);
EXPECT_EQ(-1, s32);
EXPECT_EQ(-1, s64);
}
TEST(ReadBigEndianTest, ReadUnsignedSigned) {
uint8_t data[] = {0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, 0xA1, 0xA2};
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
ReadBigEndian(data, &u8);
ReadBigEndian(data, &u16);
ReadBigEndian(data, &u32);
ReadBigEndian(data, &u64);
EXPECT_EQ(0xA0, u8);
EXPECT_EQ(0xA0B0, u16);
EXPECT_EQ(0xA0B0C0D0, u32);
EXPECT_EQ(0xA0B0C0D0E0F0A1A2ull, u64);
}
TEST(ReadBigEndianTest, TryAll16BitValues) {
using signed_type = int16_t;
uint8_t data[sizeof(signed_type)];
for (int i = std::numeric_limits<signed_type>::min();
i <= std::numeric_limits<signed_type>::max(); i++) {
signed_type expected = i;
signed_type actual = 0;
WriteBigEndian(reinterpret_cast<char*>(data), expected);
ReadBigEndian(data, &actual);
EXPECT_EQ(expected, actual);
}
}
TEST(BigEndianReaderTest, ReadsValues) {
uint8_t data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA,
0xB, 0xC, 0xD, 0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
EXPECT_TRUE(reader.Skip(2));
EXPECT_EQ(data + 2, reader.ptr());
EXPECT_EQ(reader.remaining(), sizeof(data) - 2);
EXPECT_TRUE(reader.ReadBytes(buf, sizeof(buf)));
EXPECT_EQ(0x2, buf[0]);
EXPECT_EQ(0x3, buf[1]);
EXPECT_TRUE(reader.ReadU8(&u8));
EXPECT_EQ(0x4, u8);
EXPECT_TRUE(reader.ReadU16(&u16));
EXPECT_EQ(0x0506, u16);
EXPECT_TRUE(reader.ReadU32(&u32));
EXPECT_EQ(0x0708090Au, u32);
EXPECT_TRUE(reader.ReadU64(&u64));
EXPECT_EQ(0x0B0C0D0E0F1A2B3Cllu, u64);
base::StringPiece expected(reinterpret_cast<const char*>(reader.ptr()), 2);
EXPECT_TRUE(reader.ReadPiece(&piece, 2));
EXPECT_EQ(2u, piece.size());
EXPECT_EQ(expected.data(), piece.data());
}
TEST(BigEndianReaderTest, ReadsLengthPrefixedValues) {
{
uint8_t u8_prefixed_data[] = {8, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u8_prefixed_data, sizeof(u8_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU8LengthPrefixed(&piece));
// |reader| should skip both a u8 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u8_prefixed_data + 9);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u8_prefixed_data + 1);
}
{
uint8_t u16_prefixed_data[] = {0, 8, 0xD, 0xE, 0xF,
0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
// |reader| should skip both a u16 and the length-8 length-prefixed field.
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 10);
EXPECT_EQ(piece.size(), 8u);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
// With no data left, we shouldn't be able to
// read another u8 length prefix (or a u16 length prefix,
// for that matter).
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
}
{
// Make sure there's no issue reading a zero-value length prefix.
uint8_t u16_prefixed_data[3] = {};
BigEndianReader reader(u16_prefixed_data, sizeof(u16_prefixed_data));
base::StringPiece piece;
ASSERT_TRUE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(reader.ptr(), u16_prefixed_data + 2);
EXPECT_EQ(reinterpret_cast<const uint8_t*>(piece.data()),
u16_prefixed_data + 2);
EXPECT_EQ(piece.size(), 0u);
}
}
TEST(BigEndianReaderTest, LengthPrefixedReadsFailGracefully) {
// We can't read 0xF (or, for that matter, 0xF8) bytes after the length
// prefix: there isn't enough data.
uint8_t data[] = {0xF, 8, 9, 0xA, 0xB, 0xC, 0xD,
0xE, 0xF, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E};
BigEndianReader reader(data, sizeof(data));
base::StringPiece piece;
EXPECT_FALSE(reader.ReadU8LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
EXPECT_FALSE(reader.ReadU16LengthPrefixed(&piece));
EXPECT_EQ(data, reader.ptr());
}
TEST(BigEndianReaderTest, RespectsLength) {
uint8_t data[8];
char buf[2];
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
base::StringPiece piece;
BigEndianReader reader(data, sizeof(data));
// 8 left
EXPECT_FALSE(reader.Skip(9));
EXPECT_TRUE(reader.Skip(1));
// 7 left
EXPECT_FALSE(reader.ReadU64(&u64));
EXPECT_TRUE(reader.Skip(4));
// 3 left
EXPECT_FALSE(reader.ReadU32(&u32));
EXPECT_FALSE(reader.ReadPiece(&piece, 4));
EXPECT_TRUE(reader.Skip(2));
// 1 left
EXPECT_FALSE(reader.ReadU16(&u16));
EXPECT_FALSE(reader.ReadBytes(buf, 2));
EXPECT_TRUE(reader.Skip(1));
// 0 left
EXPECT_FALSE(reader.ReadU8(&u8));
EXPECT_EQ(0u, reader.remaining());
}
TEST(BigEndianReaderTest, SafePointerMath) {
uint8_t data[] = "foo";
BigEndianReader reader(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
char* dummy_buf = reinterpret_cast<char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
base::StringPiece piece;
EXPECT_FALSE(reader.Skip(extreme_length));
EXPECT_FALSE(reader.ReadBytes(dummy_buf, extreme_length));
EXPECT_FALSE(reader.ReadPiece(&piece, extreme_length));
}
TEST(BigEndianWriterTest, WritesValues) {
char expected[] = { 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0xA, 0xB, 0xC, 0xD, 0xE,
0xF, 0x1A, 0x2B, 0x3C };
char data[sizeof(expected)];
char buf[] = { 0x2, 0x3 };
memset(data, 0, sizeof(data));
BigEndianWriter writer(data, sizeof(data));
EXPECT_TRUE(writer.Skip(2));
EXPECT_TRUE(writer.WriteBytes(buf, sizeof(buf)));
EXPECT_TRUE(writer.WriteU8(0x4));
EXPECT_TRUE(writer.WriteU16(0x0506));
EXPECT_TRUE(writer.WriteU32(0x0708090A));
EXPECT_TRUE(writer.WriteU64(0x0B0C0D0E0F1A2B3Cllu));
EXPECT_EQ(0, memcmp(expected, data, sizeof(expected)));
}
TEST(BigEndianWriterTest, RespectsLength) {
char data[8];
char buf[2];
uint8_t u8 = 0;
uint16_t u16 = 0;
uint32_t u32 = 0;
uint64_t u64 = 0;
BigEndianWriter writer(data, sizeof(data));
// 8 left
EXPECT_FALSE(writer.Skip(9));
EXPECT_TRUE(writer.Skip(1));
// 7 left
EXPECT_FALSE(writer.WriteU64(u64));
EXPECT_TRUE(writer.Skip(4));
// 3 left
EXPECT_FALSE(writer.WriteU32(u32));
EXPECT_TRUE(writer.Skip(2));
// 1 left
EXPECT_FALSE(writer.WriteU16(u16));
EXPECT_FALSE(writer.WriteBytes(buf, 2));
EXPECT_TRUE(writer.Skip(1));
// 0 left
EXPECT_FALSE(writer.WriteU8(u8));
EXPECT_EQ(0u, writer.remaining());
}
TEST(BigEndianWriterTest, SafePointerMath) {
char data[3];
BigEndianWriter writer(data, sizeof(data));
// The test should fail without ever dereferencing the |dummy_buf| pointer.
const char* dummy_buf = reinterpret_cast<const char*>(0xdeadbeef);
// Craft an extreme length value that would cause |reader.data() + len| to
// overflow.
size_t extreme_length = std::numeric_limits<size_t>::max() - 1;
EXPECT_FALSE(writer.Skip(extreme_length));
EXPECT_FALSE(writer.WriteBytes(dummy_buf, extreme_length));
}
} // namespace base