Zeya Xue 5/10/2019
-
Written by Zhengyao "Zeya" Xue, ORCID
-
The data files and R scripts can be found in this GitHub repo
-
Thumbnail of expected Heatmap
- P.S. The demonstration shown here is using data from this paper
The starting point of the workflow is a normailzed KEGG module table
## KEGG_module Low_A Low_B High_A High_B
## 1 Nitrogen_metabolism 399.25 199.20 130.59 0.00
## 2 Methane_metabolism 17121.72 20633.81 31785.74 16822.52
## 3 Sulfur_metabolism 5320.98 6077.40 5762.23 4580.87
## 4 Photosynthesis 6553.32 40847.12 55201.64 129825.94
## 5 ATP_synthesis 58850.99 45995.37 49470.13 50600.52
## 6 Oxidative_phosphorylation 67116.60 54022.28 55510.65 54980.40
library(superheat)
# The otu table slot of phyloseq object
KeggTPM <- read.table(file.path("example_data/KEGG_module_TPM.tsv"),
header = TRUE, sep = "\t")
row.names(KeggTPM) <- KeggTPM$KEGG_module
KeggTPM <- KeggTPM[,-1]
KeggTPM <- as.matrix.data.frame(KeggTPM)
superheat(KeggTPM,
# retain original order of rows/cols
pretty.order.rows = TRUE,
pretty.order.cols = TRUE,
row.dendrogram = TRUE,
col.dendrogram = TRUE,
grid.hline = TRUE,
row.title = "Annotation",
column.title = "SampleID",
left.label.text.size = 4,
bottom.label.text.size = 5,
left.label.size = 0.8,
# change the grid color to white (more pretty on a dark background)
grid.hline.col = "white",
grid.vline.col = "white")
## Warning: package 'bindrcpp' was built under R version 3.4.4