-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
399 lines (330 loc) · 16.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import sys
import shutil
import torch
import pandas as pd
import torch.nn as nn
from dataclasses import dataclass
from torch.utils.data import DataLoader
import numpy as np
from clipreid.loss import ClipLoss
from clipreid.trainer import train, get_scheduler
from clipreid.utils import Logger, setup_system, print_line
from clipreid.model import TimmModel, OpenClipModel
from clipreid.transforms import get_transforms
from clipreid.dataset import TrainDataset, TestDataset
from clipreid.evaluator import predict, compute_dist_matrix, compute_scores
@dataclass
class Configuration:
'''
--------------------------------------------------------------------------
Open Clip Models:
--------------------------------------------------------------------------
- ('RN50', 'openai')
- ('RN50', 'yfcc15m')
- ('RN50', 'cc12m')
- ('RN50-quickgelu', 'openai')
- ('RN50-quickgelu', 'yfcc15m')
- ('RN50-quickgelu', 'cc12m')
- ('RN101', 'openai')
- ('RN101', 'yfcc15m')
- ('RN101-quickgelu', 'openai')
- ('RN101-quickgelu', 'yfcc15m')
- ('RN50x4', 'openai')
- ('RN50x16', 'openai')
- ('RN50x64', 'openai')
- ('ViT-B-32', 'openai')
- ('ViT-B-32', 'laion2b_e16')
- ('ViT-B-32', 'laion400m_e31')
- ('ViT-B-32', 'laion400m_e32')
- ('ViT-B-32-quickgelu', 'openai')
- ('ViT-B-32-quickgelu', 'laion400m_e31')
- ('ViT-B-32-quickgelu', 'laion400m_e32')
- ('ViT-B-16', 'openai')
- ('ViT-B-16', 'laion400m_e31')
- ('ViT-B-16', 'laion400m_e32')
- ('ViT-B-16-plus-240', 'laion400m_e31')
- ('ViT-B-16-plus-240', 'laion400m_e32')
- ('ViT-L-14', 'openai')
- ('ViT-L-14', 'laion400m_e31')
- ('ViT-L-14', 'laion400m_e32')
- ('ViT-L-14-336', 'openai')
- ('ViT-H-14', 'laion2b_s32b_b79k')
- ('ViT-g-14', 'laion2b_s12b_b42k')
--------------------------------------------------------------------------
Timm Models:
--------------------------------------------------------------------------
- 'convnext_base_in22ft1k'
- 'convnext_large_in22ft1k'
- 'vit_base_patch16_224'
- 'vit_large_patch16_224'
- ...
- https://github.com/rwightman/pytorch-image-models/blob/master/results/results-imagenet.csv
--------------------------------------------------------------------------
'''
# laion2B-39B-b160k
# Model
# model: str = (eva_large_patch14_336.in22k_ft_in22k_in1k) # ('name of Clip model', 'name of dataset') | 'name of Timm model'
model: str = ('ViT-L-14', 'openai')
# model: str = 'regnety_1280.swag_ft_in1k' # ('name of Clip model', 'name of dataset') | 'name of Timm model'
# model: str = 'eva_large_patch14_336.in22k_ft_in22k_in1k' # ('name of Clip model', 'name of dataset') | 'name of Timm model'
remove_proj = True # remove projection for Clip ViT models
# Settings only for Timm models
img_size: int = (224,224) # follow above Link for image size of Timm models
mean: float = (0.485, 0.456, 0.406) # mean of ImageNet
std: float = (0.229, 0.224, 0.225) # std of ImageNet
# Split
train_on_all: bool = False # True: train incl. test data
fold: int = -1 # -1 for given test split | int >=0 for custom folds
# Training
seed: int = 1 # seed for Python, Numpy, Pytorch
epochs: int = 4 # epochs to train
batch_size: int = 64 # batch size for training
batch_size_eval: int = 64 # batch size for evaluation
gpu_ids: tuple = (0,1,2,3,4,5,6,7) # GPU ids for training e.g. (0,1) multi GPU
mixed_precision: bool = True # fp16 for faster training
# Learning Rate
lr: float = 0.00004 # use 4 * 10^-5 for ViT | 4 * 10^-4 for CNN
scheduler: str = "polynomial" # "polynomial" | "cosine" | "linear" | "constant" | None
warmup_epochs: float = 1.0 # linear increase lr
lr_end: float = 0.00001 # only for "polynomial"
# Optimizer
gradient_clipping: float = None # None | float
grad_checkpointing: bool = False # gradient checkpointing for CLIP ViT models
gradient_accumulation: int = 1 # 1: no gradient accumulation
# Loss
label_smoothing: float = 0.1 # label smoothing for crossentropy loss
# Eval
zero_shot: bool = True # eval before training
rerank: bool = True # use re-ranking as post-processing
normalize_features: int = True # L2 normalize of features during eval
# Dataset
data_dir: str = "./data_reid" # datset path
prob_flip: str = 0.5 # probability for random horizontal flip during training
# Savepath for model checkpoints
model_path: str = "./model"
# Checkpoint to start from
checkpoint_start: str = None
# show progress bar
verbose: bool = True
# set num_workers to 0 on Windows
num_workers: int = 0 if os.name == 'nt' else 8
# train on GPU if available
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
# for better performance
cudnn_benchmark: bool = True
# make cudnn deterministic
cudnn_deterministic: bool = True # set to False for faster training of CNNs
#----------------------------------------------------------------------------------------------------------------------#
# Config #
#----------------------------------------------------------------------------------------------------------------------#
config = Configuration()
if isinstance(config.model, tuple):
# Clip models
if config.train_on_all:
model_path = "{}/{}_{}_{}/all_data_seed_{}".format(config.model_path,
config.model[0],
config.model[1],
'colorjitter_all',
config.seed)
else:
model_path = "{}/{}_{}_{}/fold{}_seed_{}".format(config.model_path,
config.model[0],
config.model[1],
'colorjitter_challenge_sample',
config.fold,
config.seed)
else:
# Timm models
if config.train_on_all:
model_path = "{}/{}_{}/all_data_seed_{}".format(config.model_path,
config.model,
'colorjitter',
config.seed)
else:
model_path = "{}/{}_{}/fold{}_seed_{}".format(config.model_path,
config.model,
'colorjitter',
config.fold,
config.seed)
if not os.path.exists(model_path):
os.makedirs(model_path)
shutil.copyfile(os.path.basename(__file__), "{}/train.py".format(model_path))
# Redirect print to both console and log file
sys.stdout = Logger("{}/log.txt".format(model_path))
# Set seed
setup_system(seed=config.seed,
cudnn_benchmark=config.cudnn_benchmark,
cudnn_deterministic=config.cudnn_deterministic)
#----------------------------------------------------------------------------------------------------------------------#
# Model #
#----------------------------------------------------------------------------------------------------------------------#
print("\nModel: {}".format(config.model))
if isinstance(config.model, tuple):
model = OpenClipModel(config.model[0],
config.model[1],
remove_proj=config.remove_proj
)
# img_size = model.get_image_size()
img_size = config.img_size
mean=(0.48145466, 0.4578275, 0.40821073)
std=(0.26862954, 0.26130258, 0.27577711)
if config.grad_checkpointing:
model.set_grad_checkpoint(enable=config.grad_checkpointing)
else:
model = TimmModel(config.model,
pretrained=True)
img_size = config.img_size
mean = config.mean
std = config.std
# load pretrained Checkpoint
if config.checkpoint_start is not None:
print("\nStart from:", config.checkpoint_start)
model_state_dict = torch.load(config.checkpoint_start)
model.load_state_dict(model_state_dict, strict=True)
# Data parallel
print("\nGPUs available:", torch.cuda.device_count())
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
print("Using Data Prallel with GPU IDs: {}".format(config.gpu_ids))
model = torch.nn.DataParallel(model, device_ids=config.gpu_ids)
multi_gpu = True
else:
multi_gpu = False
# Model to device
model = model.to(config.device)
print("\nImage Size:", img_size)
print("Mean: {}".format(mean))
print("Std: {}".format(std))
#----------------------------------------------------------------------------------------------------------------------#
# DataLoader #
#----------------------------------------------------------------------------------------------------------------------#
# Data
df = pd.read_csv("{}/train_df.csv".format(config.data_dir))
# Split data
if config.train_on_all:
df_train = df
df_test = df[df["split"] == "test"]
else:
if config.fold == -1:
# Use given test split
df_train = df[df["split"] == "train"]
df_test = df[df["split"] == "test"]
else:
# Use custom folds
df_train = df[df["fold"] != config.fold]
df_test = df[df["fold"] == config.fold]
# Transforms
val_transforms, train_transforms = get_transforms(img_size, mean, std)
# Train
train_dataset = TrainDataset(img_path=config.data_dir,
df=df_train,
image_transforms=train_transforms,
prob_flip=config.prob_flip,
shuffle_batch_size=config.batch_size)
train_loader = DataLoader(train_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True,
drop_last=True)
# Validation
test_dataset = TestDataset(img_path=config.data_dir,
df=df_test,
image_transforms=val_transforms)
test_loader = DataLoader(test_dataset,
batch_size=config.batch_size_eval,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True)
#----------------------------------------------------------------------------------------------------------------------#
# Loss #
#----------------------------------------------------------------------------------------------------------------------#
loss_fn = torch.nn.CrossEntropyLoss(label_smoothing=config.label_smoothing)
loss_function= ClipLoss(loss_function=loss_fn,
device=config.device)
#----------------------------------------------------------------------------------------------------------------------#
# optimizer and scaler #
#----------------------------------------------------------------------------------------------------------------------#
optimizer = torch.optim.AdamW(model.parameters(), lr=config.lr)
if config.mixed_precision:
scaler = torch.cuda.amp.GradScaler(init_scale=2.**10)
else:
scaler = None
#----------------------------------------------------------------------------------------------------------------------#
# Scheduler #
#----------------------------------------------------------------------------------------------------------------------#
if config.scheduler is not None:
scheduler = get_scheduler(config,
optimizer,
train_loader_length=len(train_loader))
else:
scheduler = None
#----------------------------------------------------------------------------------------------------------------------#
# Zero Shot #
#----------------------------------------------------------------------------------------------------------------------#
if config.zero_shot:
print_line(name="Zero-Shot", length=80)
features_dict = predict(model,
dataloader=test_loader,
device=config.device,
normalize_features=config.normalize_features,
verbose=config.verbose)
dist_matrix, dist_matrix_rerank = compute_dist_matrix(features_dict,
test_dataset.query,
test_dataset.gallery,
rerank=True)
print("\nWithout re-ranking:")
mAP = compute_scores(dist_matrix,
test_dataset.query,
test_dataset.gallery)
if dist_matrix_rerank is not None:
print("\nWith re-ranking:")
mAP = compute_scores(dist_matrix_rerank,
test_dataset.query,
test_dataset.gallery)
#----------------------------------------------------------------------------------------------------------------------#
# Train #
#----------------------------------------------------------------------------------------------------------------------#
for epoch in range(1, config.epochs+1):
print_line(name="Epoch: {}".format(epoch), length=80)
# Train
train_loss = train(model,
dataloader=train_loader,
loss_function=loss_function,
optimizer=optimizer,
device=config.device,
scheduler=scheduler,
scaler=scaler,
gradient_accumulation=config.gradient_accumulation,
gradient_clipping=config.gradient_clipping,
verbose=config.verbose,
multi_gpu=multi_gpu)
print("Avg. Train Loss = {:.4f} - Lr = {:.6f}\n".format(train_loss,
optimizer.param_groups[0]['lr']))
# Evaluate
features_dict = predict(model,
dataloader=test_loader,
device=config.device,
normalize_features=config.normalize_features,
verbose=config.verbose)
dist_matrix, dist_matrix_rerank = compute_dist_matrix(features_dict,
test_dataset.query,
test_dataset.gallery,
rerank=True)
print("\nWithout re-ranking:")
mAP = compute_scores(dist_matrix,
test_dataset.query,
test_dataset.gallery)
if dist_matrix_rerank is not None:
print("\nWith re-ranking:")
mAP_rerank = compute_scores(dist_matrix_rerank,
test_dataset.query,
test_dataset.gallery)
checkpoint_path = '{}/weights_e{}.pth'.format(model_path, epoch)
# Save model
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
torch.save(model.module.state_dict(), checkpoint_path)
else:
torch.save(model.state_dict(), checkpoint_path)
# Shuffle data for next epoch
train_loader.dataset.shuffle()