-
Notifications
You must be signed in to change notification settings - Fork 8
/
MemoryNet.py
363 lines (283 loc) · 15.6 KB
/
MemoryNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.nn as nn
import torch.nn.functional as F
from pdb import set_trace as stx
import torch
import torch.nn as nn
import torch.nn.functional as F
from pdb import set_trace as stx
import memory
##########################################################################
def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1):
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), bias=bias, stride = stride)
##########################################################################
## Channel Attention Layer
class CALayer(nn.Module):
def __init__(self, channel, reduction=16, bias=False):
super(CALayer, self).__init__()
# global average pooling: feature --> point
self.avg_pool = nn.AdaptiveAvgPool2d(1)
# feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
nn.ReLU(inplace=True),
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
##########################################################################
## Channel Attention Block (CAB)
class CAB(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, bias, act):
super(CAB, self).__init__()
modules_body = []
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
modules_body.append(act)
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
self.CA = CALayer(n_feat, reduction, bias=bias)
self.body = nn.Sequential(*modules_body)
def forward(self, x):
res = self.body(x)
res = self.CA(res)
res += x
return res
##########################################################################
## Supervised Attention Module
class SAM(nn.Module):
def __init__(self, n_feat, kernel_size, bias):
super(SAM, self).__init__()
self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)
self.conv2 = conv(n_feat, 3, kernel_size, bias=bias)
self.conv3 = conv(3, n_feat, kernel_size, bias=bias)
def forward(self, x, x_img):
x1 = self.conv1(x)
img = self.conv2(x) + x_img
x2 = torch.sigmoid(self.conv3(img))
x1 = x1*x2
x1 = x1+x
return x1, img
##########################################################################
## U-Net
class Encoder(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats, csff):
super(Encoder, self).__init__()
self.encoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.encoder_level2 = [CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.encoder_level3 = [CAB(n_feat+(scale_unetfeats*2), kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.encoder_level1 = nn.Sequential(*self.encoder_level1)
self.encoder_level2 = nn.Sequential(*self.encoder_level2)
self.encoder_level3 = nn.Sequential(*self.encoder_level3)
self.down12 = DownSample(n_feat, scale_unetfeats)
self.down23 = DownSample(n_feat+scale_unetfeats, scale_unetfeats)
# Cross Stage Feature Fusion (CSFF)
if csff:
self.csff_enc1 = nn.Conv2d(n_feat, n_feat, kernel_size=1, bias=bias)
self.csff_enc2 = nn.Conv2d(n_feat+scale_unetfeats, n_feat+scale_unetfeats, kernel_size=1, bias=bias)
self.csff_enc3 = nn.Conv2d(n_feat+(scale_unetfeats*2), n_feat+(scale_unetfeats*2), kernel_size=1, bias=bias)
self.csff_dec1 = nn.Conv2d(n_feat, n_feat, kernel_size=1, bias=bias)
self.csff_dec2 = nn.Conv2d(n_feat+scale_unetfeats, n_feat+scale_unetfeats, kernel_size=1, bias=bias)
self.csff_dec3 = nn.Conv2d(n_feat+(scale_unetfeats*2), n_feat+(scale_unetfeats*2), kernel_size=1, bias=bias)
def forward(self, x, encoder_outs=None, decoder_outs=None):
enc1 = self.encoder_level1(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc1 = enc1 + self.csff_enc1(encoder_outs[0]) + self.csff_dec1(decoder_outs[0])
x = self.down12(enc1)
enc2 = self.encoder_level2(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc2 = enc2 + self.csff_enc2(encoder_outs[1]) + self.csff_dec2(decoder_outs[1])
x = self.down23(enc2)
enc3 = self.encoder_level3(x)
if (encoder_outs is not None) and (decoder_outs is not None):
enc3 = enc3 + self.csff_enc3(encoder_outs[2]) + self.csff_dec3(decoder_outs[2])
return [enc1, enc2, enc3]
class Decoder(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats):
super(Decoder, self).__init__()
self.decoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.decoder_level2 = [CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.decoder_level3 = [CAB(n_feat+(scale_unetfeats*2), kernel_size, reduction, bias=bias, act=act) for _ in range(2)]
self.decoder_level1 = nn.Sequential(*self.decoder_level1)
self.decoder_level2 = nn.Sequential(*self.decoder_level2)
self.decoder_level3 = nn.Sequential(*self.decoder_level3)
self.skip_attn1 = CAB(n_feat, kernel_size, reduction, bias=bias, act=act)
self.skip_attn2 = CAB(n_feat+scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
self.up21 = SkipUpSample(n_feat, scale_unetfeats)
self.up32 = SkipUpSample(n_feat+scale_unetfeats, scale_unetfeats)
def forward(self, outs):
enc1, enc2, enc3 = outs
dec3 = self.decoder_level3(enc3)
x = self.up32(dec3, self.skip_attn2(enc2))
dec2 = self.decoder_level2(x)
x = self.up21(dec2, self.skip_attn1(enc1))
dec1 = self.decoder_level1(x)
return [dec1,dec2,dec3]
##########################################################################
##---------- Resizing Modules ----------
class DownSample(nn.Module):
def __init__(self, in_channels,s_factor):
super(DownSample, self).__init__()
self.down = nn.Sequential(nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels, in_channels+s_factor, 1, stride=1, padding=0, bias=False))
def forward(self, x):
x = self.down(x)
return x
class UpSample(nn.Module):
def __init__(self, in_channels,s_factor):
super(UpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels+s_factor, in_channels, 1, stride=1, padding=0, bias=False))
def forward(self, x):
x = self.up(x)
return x
class SkipUpSample(nn.Module):
def __init__(self, in_channels,s_factor):
super(SkipUpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels+s_factor, in_channels, 1, stride=1, padding=0, bias=False))
def forward(self, x, y):
x = self.up(x)
x = x + y
return x
##########################################################################
## Original Resolution Block (ORB)
class ORB(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, act, bias, num_cab):
super(ORB, self).__init__()
modules_body = []
modules_body = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(num_cab)]
modules_body.append(conv(n_feat, n_feat, kernel_size))
self.body = nn.Sequential(*modules_body)
def forward(self, x):
res = self.body(x)
res += x
return res
##########################################################################
class ORSNet(nn.Module):
def __init__(self, n_feat, scale_orsnetfeats, kernel_size, reduction, act, bias, scale_unetfeats, num_cab):
super(ORSNet, self).__init__()
self.orb1 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias, num_cab)
self.orb2 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias, num_cab)
self.orb3 = ORB(n_feat+scale_orsnetfeats, kernel_size, reduction, act, bias, num_cab)
self.up_enc1 = UpSample(n_feat, scale_unetfeats)
self.up_dec1 = UpSample(n_feat, scale_unetfeats)
self.up_enc2 = nn.Sequential(UpSample(n_feat+scale_unetfeats, scale_unetfeats), UpSample(n_feat, scale_unetfeats))
self.up_dec2 = nn.Sequential(UpSample(n_feat+scale_unetfeats, scale_unetfeats), UpSample(n_feat, scale_unetfeats))
self.conv_enc1 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
self.conv_enc2 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
self.conv_enc3 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
self.conv_dec1 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
self.conv_dec2 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
self.conv_dec3 = nn.Conv2d(n_feat, n_feat+scale_orsnetfeats, kernel_size=1, bias=bias)
def forward(self, x, encoder_outs, decoder_outs):
x = self.orb1(x)
x = x + self.conv_enc1(encoder_outs[0]) + self.conv_dec1(decoder_outs[0])
x = self.orb2(x)
x = x + self.conv_enc2(self.up_enc1(encoder_outs[1])) + self.conv_dec2(self.up_dec1(decoder_outs[1]))
x = self.orb3(x)
x = x + self.conv_enc3(self.up_enc2(encoder_outs[2])) + self.conv_dec3(self.up_dec2(decoder_outs[2]))
return x
##########################################################################
class MemoryNet(nn.Module):
def __init__(self, in_c=3, out_c=3, n_feat=40, scale_unetfeats=20, scale_orsnetfeats=16, num_cab=8, kernel_size=3, reduction=4, bias=False):
super(MemoryNet, self).__init__()
#self.memory = memory.MemModule()
self.memory = memory.MemModule(ptt_num=2, num_cls=10, part_num=5, fea_dim=in_c)
act=nn.PReLU()
self.shallow_feat1 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias=bias), CAB(n_feat,kernel_size, reduction, bias=bias, act=act))
self.shallow_feat2 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias=bias), CAB(n_feat,kernel_size, reduction, bias=bias, act=act))
self.shallow_feat3 = nn.Sequential(conv(in_c, n_feat, kernel_size, bias=bias), CAB(n_feat,kernel_size, reduction, bias=bias, act=act))
# Cross Stage Feature Fusion (CSFF)
self.stage1_encoder = Encoder(n_feat, kernel_size, reduction, act, bias, scale_unetfeats, csff=False)
self.stage1_decoder = Decoder(n_feat, kernel_size, reduction, act, bias, scale_unetfeats)
self.stage2_encoder = Encoder(n_feat, kernel_size, reduction, act, bias, scale_unetfeats, csff=True)
self.stage2_decoder = Decoder(n_feat, kernel_size, reduction, act, bias, scale_unetfeats)
self.stage3_orsnet = ORSNet(n_feat, scale_orsnetfeats, kernel_size, reduction, act, bias, scale_unetfeats, num_cab)
self.sam12 = SAM(n_feat, kernel_size=1, bias=bias)
self.sam23 = SAM(n_feat, kernel_size=1, bias=bias)
self.concat12 = conv(n_feat*2, n_feat, kernel_size, bias=bias)
self.concat23 = conv(n_feat*2, n_feat+scale_orsnetfeats, kernel_size, bias=bias)
self.tail = conv(n_feat+scale_orsnetfeats, out_c, kernel_size, bias=bias)
def forward(self, x3_img):
H = x3_img.size(2)
W = x3_img.size(3)
##通过memory模块使得变为三个分支
x1,x2,x3 = self.memory(x3_img)
#x3bot_img = x3_img
# Multi-Patch Hierarchy: Split Image into four non-overlapping patches
# Two Patches for Stage 2
x2top_img = x2[:,:,0:int(H/2),:]
x2bot_img = x2[:,:,int(H/2):H,:]
x3top_img = x3[:,:,0:int(H/2),:]
x3bot_img = x3[:,:,int(H/2):H,:]
# Four Patches for Stage 1
x1ltop_img = x3top_img[:,:,:,0:int(W/2)]
x1rtop_img = x3top_img[:,:,:,int(W/2):W]
x1lbot_img = x3bot_img[:,:,:,0:int(W/2)]
x1rbot_img = x3bot_img[:,:,:,int(W/2):W]
print(x1ltop_img.shape)
##-------------------------------------------
##-------------- Stage 1---------------------
##-------------------------------------------
## Compute Shallow Features
x1ltop = self.shallow_feat1(x1ltop_img)
x1rtop = self.shallow_feat1(x1rtop_img)
x1lbot = self.shallow_feat1(x1lbot_img)
x1rbot = self.shallow_feat1(x1rbot_img)
## Process features of all 4 patches with Encoder of Stage 1
feat1_ltop = self.stage1_encoder(x1ltop)
feat1_rtop = self.stage1_encoder(x1rtop)
feat1_lbot = self.stage1_encoder(x1lbot)
feat1_rbot = self.stage1_encoder(x1rbot)
## Concat deep features
feat1_top = [torch.cat((k,v), 3) for k,v in zip(feat1_ltop,feat1_rtop)]
feat1_bot = [torch.cat((k,v), 3) for k,v in zip(feat1_lbot,feat1_rbot)]
## Pass features through Decoder of Stage 1
res1_top = self.stage1_decoder(feat1_top)
res1_bot = self.stage1_decoder(feat1_bot)
## Apply Supervised Attention Module (SAM)
x2top_samfeats, stage1_img_top = self.sam12(res1_top[0], x2top_img)
x2bot_samfeats, stage1_img_bot = self.sam12(res1_bot[0], x2bot_img)
## Output image at Stage 1
stage1_img = torch.cat([stage1_img_top, stage1_img_bot],2)
##-------------------------------------------
##-------------- Stage 2---------------------
##-------------------------------------------
## Compute Shallow Features
x2top = self.shallow_feat2(x2top_img)
x2bot = self.shallow_feat2(x2bot_img)
## Concatenate SAM features of Stage 1 with shallow features of Stage 2
x2top_cat = self.concat12(torch.cat([x2top, x2top_samfeats], 1))
x2bot_cat = self.concat12(torch.cat([x2bot, x2bot_samfeats], 1))
## Process features of both patches with Encoder of Stage 2
feat2_top = self.stage2_encoder(x2top_cat, feat1_top, res1_top)
feat2_bot = self.stage2_encoder(x2bot_cat, feat1_bot, res1_bot)
## Concat deep features
feat2 = [torch.cat((k,v), 2) for k,v in zip(feat2_top,feat2_bot)]
## Pass features through Decoder of Stage 2
res2 = self.stage2_decoder(feat2)
## Apply SAM
x3_samfeats, stage2_img = self.sam23(res2[0], x1)
##-------------------------------------------
##-------------- Stage 3---------------------
##-------------------------------------------
## Compute Shallow Features
x3 = self.shallow_feat3(x1)
## Concatenate SAM features of Stage 2 with shallow features of Stage 3
x3_cat = self.concat23(torch.cat([x3, x3_samfeats], 1))
x3_cat = self.stage3_orsnet(x3_cat, feat2, res2)
stage3_img = self.tail(x3_cat)
return [stage3_img+x1, stage2_img, stage1_img]
from torch.utils.tensorboard import SummaryWriter
p = MemoryNet()
image = torch.rand(1,3 ,512,512);
writer = SummaryWriter()
writer.add_graph(p, input_to_model=image, verbose=False)
print(p)
y = p(image)
writer.flush()
writer.close()