-
Notifications
You must be signed in to change notification settings - Fork 495
/
verify.py
198 lines (169 loc) · 7.22 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from __future__ import print_function
import os
import argparse
from tqdm import tqdm
import torch
import torch.nn as nn
import PIL
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import warnings
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
class Options():
def __init__(self):
# data settings
parser = argparse.ArgumentParser(description='Deep Encoding')
parser.add_argument('--base-size', type=int, default=None,
help='base image size')
parser.add_argument('--crop-size', type=int, default=224,
help='crop image size')
# model params
parser.add_argument('--model', type=str, default='densenet',
help='network model type (default: densenet)')
# training hyper params
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='batch size for training (default: 128)')
parser.add_argument('--workers', type=int, default=32,
metavar='N', help='dataloader threads')
# cuda, seed and logging
parser.add_argument('--no-cuda', action='store_true',
default=False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
# checking point
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--verify', type=str, default=None,
help='put the path to resuming file if needed')
self.parser = parser
def parse(self):
args = self.parser.parse_args()
return args
def main():
# init the args
args = Options().parse()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# init dataloader
interp = PIL.Image.BILINEAR if args.crop_size < 320 else PIL.Image.BICUBIC
base_size = args.base_size if args.base_size is not None else int(1.0 * args.crop_size / 0.875)
transform_val = transforms.Compose([
ECenterCrop(args.crop_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
valset = ImageNetDataset(transform=transform_val, train=False)
val_loader = torch.utils.data.DataLoader(
valset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True if args.cuda else False)
# init the model
model_kwargs = {}
assert args.model in torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)
model = torch.hub.load('zhanghang1989/ResNeSt', args.model, pretrained=True)
print(model)
if args.cuda:
model.cuda()
# Please use CUDA_VISIBLE_DEVICES to control the number of gpus
model = nn.DataParallel(model)
# checkpoint
if args.verify:
if os.path.isfile(args.verify):
print("=> loading checkpoint '{}'".format(args.verify))
model.module.load_state_dict(torch.load(args.verify))
else:
raise RuntimeError ("=> no verify checkpoint found at '{}'".\
format(args.verify))
elif args.resume is not None:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.module.load_state_dict(checkpoint['state_dict'])
else:
raise RuntimeError ("=> no resume checkpoint found at '{}'".\
format(args.resume))
model.eval()
top1 = AverageMeter()
top5 = AverageMeter()
is_best = False
tbar = tqdm(val_loader, desc='\r')
for batch_idx, (data, target) in enumerate(tbar):
if args.cuda:
data, target = data.cuda(), target.cuda()
with torch.no_grad():
output = model(data)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], data.size(0))
top5.update(acc5[0], data.size(0))
tbar.set_description('Top1: %.3f | Top5: %.3f'%(top1.avg, top5.avg))
print('Top1 Acc: %.3f | Top5 Acc: %.3f '%(top1.avg, top5.avg))
class ECenterCrop:
"""Crop the given PIL Image and resize it to desired size.
Args:
img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
Returns:
PIL Image: Cropped image.
"""
def __init__(self, imgsize):
self.imgsize = imgsize
self.resize_method = transforms.Resize((imgsize, imgsize), interpolation=PIL.Image.BICUBIC)
def __call__(self, img):
image_width, image_height = img.size
image_short = min(image_width, image_height)
crop_size = float(self.imgsize) / (self.imgsize + 32) * image_short
crop_height, crop_width = crop_size, crop_size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
img = img.crop((crop_left, crop_top, crop_left + crop_width, crop_top + crop_height))
return self.resize_method(img)
class ImageNetDataset(datasets.ImageFolder):
BASE_DIR = "ILSVRC2012"
def __init__(self, root=os.path.expanduser('~/.encoding/data'), transform=None,
target_transform=None, train=True, **kwargs):
split='train' if train == True else 'val'
root = os.path.join(root, self.BASE_DIR, split)
super(ImageNetDataset, self).__init__(root, transform, target_transform)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
#self.val = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
#self.val = val
self.sum += val * n
self.count += n
@property
def avg(self):
avg = 0 if self.count == 0 else self.sum / self.count
return avg
if __name__ == "__main__":
main()